
Maxime Rossi Bellom
Raphael Neveu
Gabrielle Viala

When Samsung Meets Mediatek
The story of a small bug chain

2

Who we are

■ Maxime Rossi Bellom @max_r_b
■ Security researcher

and R&D leader @ Quarkslab
■ Working on mobile and embedded

software security

■ Raphaël Neveu
■ Security researcher @ Quarkslab
■ Working on low-level mobile

security

■ Gabrielle Viala @pwissenlit
■ Security researcher

and R&D leader @ Quarkslab
■ Playing with low-level stuff

4

■ Samsung Galaxy A225F
● Cheap (~300€)
● Mediatek SoC MT6769V
● Main OS: Android
● Mix of Mediatek and Samsung code
● Trustzone OS: TEEGRIS
● Secure Boot Bypass using MTKClient1

→ making debugging easier

Our Device

[1]: https://github.com/bkerler/mtkclient

5

Mediatek Secure Boot Process

6

Mediatek Secure Boot Process

7

Little Kernel (LK)

■ Open-source OS2

■ Common as bootloader in the Android world
■ Allows to boot Android or other modes

(Recovery)
■ Implements Android Verified Boot v2

● Verification of Android images
● Anti-rollback

[2]: https://github.com/littlekernel/lk

8

■ Samsung modified LK to include:
● The Odin recovery protocol
● Knox Security Bit
● Etc…
● And a JPEG parser/renderer

■ This version is closed source

Little Kernel by Samsung

9

Why Targeting the JPEG Loader/Parser

■ JPEGs are placed in a TAR archive in the up_param partition
■ The archive is signed… but the signature is not checked at boot
❗ Anyone able to write the flash can modify these JPEGs

■ Parsing JPEG is known to be hard (cf. LogoFail3)

[3]: https://www.binarly.io/blog/inside-the-logofail-poc-from-integer-overflow-to-arbitrary-code-execution

10

Why Targeting the JPEG Loader/Parser

■ JPEGs are placed in a TAR archive in the up_param partition
■ The archive is signed… but the signature is not checked at boot
❗ Anyone able to write the flash can modify these JPEGs

■ Parsing JPEG is known to be hard (cf. LogoFail3)

How are these JPEGs loaded by LK?

[3]: https://www.binarly.io/blog/inside-the-logofail-poc-from-integer-overflow-to-arbitrary-code-execution

11

Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000);
if (_JPEG_BUF == 0) {
 log("%s: img buf alloc fail\n","drawimg");
 uVar2 = 0xffffffff;
}
else {
 memset(_JPEG_BUF,0,0x100000);
 iVar1 = read_jpeg_file(file_name,_JPEG_BUF,0);
 if (iVar1 == 0) {
 log("%s: read %s from up_param as 0, size\n","drawimg",file_name);
 uVar2 = 0xffffffff;
 }
// ...

pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * 0x3c),
 *(undefined4 *)(&DAT_4c510800 + param_1 * 0x3c),
 0x2d0,0x640,1,_JPEG_BUF,iVar1);

12

Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000);
if (_JPEG_BUF == 0) {
 log("%s: img buf alloc fail\n","drawimg");
 uVar2 = 0xffffffff;
}
else {
 memset(_JPEG_BUF,0,0x100000);
 iVar1 = read_jpeg_file(file_name,_JPEG_BUF,0);
 if (iVar1 == 0) {
 log("%s: read %s from up_param as 0, size\n","drawimg",file_name);
 uVar2 = 0xffffffff;
 }
// ...

pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * 0x3c),
 *(undefined4 *)(&DAT_4c510800 + param_1 * 0x3c),
 0x2d0,0x640,1,_JPEG_BUF,iVar1);

Heap allocation of
constant size for the
buffer

13

Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000);
if (_JPEG_BUF == 0) {
 log("%s: img buf alloc fail\n","drawimg");
 uVar2 = 0xffffffff;
}
else {
 memset(_JPEG_BUF,0,0x100000);
 iVar1 = read_jpeg_file(file_name,_JPEG_BUF,0);
 if (iVar1 == 0) {
 log("%s: read %s from up_param as 0, size\n","drawimg",file_name);
 uVar2 = 0xffffffff;
 }
// ...

pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * 0x3c),
 *(undefined4 *)(&DAT_4c510800 + param_1 * 0x3c),
 0x2d0,0x640,1,_JPEG_BUF,iVar1);

Read the JPEG in
the buffer

14

Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000);
if (_JPEG_BUF == 0) {
 log("%s: img buf alloc fail\n","drawimg");
 uVar2 = 0xffffffff;
}
else {
 memset(_JPEG_BUF,0,0x100000);
 iVar1 = read_jpeg_file(file_name,_JPEG_BUF,0);
 if (iVar1 == 0) {
 log("%s: read %s from up_param as 0, size\n","drawimg",file_name);
 uVar2 = 0xffffffff;
 }
// ...

pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * 0x3c),
 *(undefined4 *)(&DAT_4c510800 + param_1 * 0x3c),
 0x2d0,0x640,1,_JPEG_BUF,iVar1);

Parse and render
the JPEG

15

Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000);
if (_JPEG_BUF == 0) {
 log("%s: img buf alloc fail\n","drawimg");
 uVar2 = 0xffffffff;
}
else {
 memset(_JPEG_BUF,0,0x100000);
 iVar1 = read_jpeg_file(file_name,_JPEG_BUF,0);
 if (iVar1 == 0) {
 log("%s: read %s from up_param as 0, size\n","drawimg",file_name);
 uVar2 = 0xffffffff;
 }
// ...

pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * 0x3c),
 *(undefined4 *)(&DAT_4c510800 + param_1 * 0x3c),
 0x2d0,0x640,1,_JPEG_BUF,iVar1);

16

Heap Overflow in JPEG Loading

■ read_jpeg_file takes a size as 3rd argument
■ It triggers an error if the file does not fit the size provided

file_size = string_to_int(tar_header_file.size,0,8);
if (size != 0 && size < file_size) {
 file_size = print("read fail! (%d < %d)\n",size,file_size,size);
 return file_size;
}
iVar1 = read(data_addr,index + 1,file_size,outbuf);

17

Heap Overflow in JPEG Loading

■ read_jpeg_file takes a size as 3rd argument
■ It triggers an error if the file does not fit the size provided
👉 Unless the size provided is 0…

file_size = string_to_int(tar_header_file.size,0,8);
if (size != 0 && size < file_size) {
 file_size = print("read fail! (%d < %d)\n",size,file_size,size);
 return file_size;
}
iVar1 = read(data_addr,index + 1,file_size,outbuf);

18

Is it exploitable?

19

Exploiting a Heap Overflow in Little Kernel

■ The heap algorithm is miniheap
● It relies on a doubly linked list

■ Chunks are in a unique memory pool
● An overflow may overwrite the metadata

of next chunk

struct free_chunk_head {

 struct free_chunk_head *prev;

 struct free_chunk_head *next;

 size_t len;

}

20

From Heap Overflow to Arbitrary Write

■ After allocation, a chunk is removed from the free list
■ next and prev are dereferenced to change the corresponding nodes

⇒ Controlling a free chunk leads to a write-what-where

node->next->prev = node->prev;

node->prev->next = node->next;

node->prev = node->next = 0;

21

From Heap Overflow to Arbitrary Write

■ After allocation, a chunk is removed from the free list
■ next and prev are dereferenced to change the corresponding nodes

⇒ Controlling a free chunk leads to a write-what-where
❗ Both values must writable addresses

node->next->prev = node->prev;

node->prev->next = node->next;

node->prev = node->next = 0;

22

From Arbitrary Write to Code Execution

Important details about LK

❌ No ASLR
❌ No canaries
❌ No bounds checks in the heap algorithm
❌ Heap is executable!

23

From Arbitrary Write to Code Execution

Important details about LK

❌ No ASLR
❌ No canaries
❌ No bounds checks in the heap algorithm
❌ Heap is executable!

Exploit strategy becomes simple:
1. Overwrite a pointer that the code will jump to
👉 the return address in the stack

2. Make it point to a shellcode in our JPEG buffer

24

Exploiting a Heap Overflow in Little Kernel

25

Exploiting a Heap Overflow in Little Kernel

26

Exploiting a Heap Overflow in Little Kernel

27

Exploiting a Heap Overflow in Little Kernel

28

Exploiting a Heap Overflow in Little Kernel

29

Exploiting a Heap Overflow in Little Kernel

30

Exploiting a Heap Overflow in Little Kernel

31

● SVE-2023-2079/CVE-2024-20832
✅ Leads to code execution
✅ Persistent (it survives reboots and factory reset)
✅ Gives full control over Normal World EL1/0
✅ Impacts Samsung devices based on Mediatek SoCs

■ Including those for which MTKClient does not work

❌ Requires to flash the up_param partition

To sum-up

32

How to write our JPEGs in the
up_param partition?

33

Odin: Samsung's recovery protocol

■ Odin is implemented in LK
■ It is available through the Download Mode

● It allows to flash partitions over USB

34

Odin: Samsung's recovery protocol

■ Images are authenticated and contain a footer signature
■ Two internal structures indicate which partitions to flash

● The Partition Information Table (PIT)
● A global structure indicating which partitions to authenticate

35

Odin: Partition Information Table

■ PIT is retrieved statically from the eMMC
■ It indicates where partitions are stored

● Memory type, block count, etc

■ A partition not present in PIT can't be flashed
■ PIT can be updated, but requires a signed

image

--- Entry #1 ---

Binary Type: 0 (AP)

Device Type: 2 (MMC)

Identifier: 70

Attributes: Read/Write

Update Attributes: 1

Block Size/Offset: 0

Block Count: 34

Partition Name: pgpt

…

36

Odin: Image Authentication

■ A global array indicates how an image should be authenticated
■ An image not present in this array will not be authenticated

● (Except for some specific images)

■ Comparing this array with PIT gives a set of images flashable without
authentication

md5hdr, md_udc, pgpt, sgpt, and vbmeta_vendor

37

GPT: GUID Partition Table

■ pgpt points to the Primary GPT Header
■ sgpt points to the Secondary GPT Header
■ Similarly to the PIT, it describes the partitions

○ (Names, sizes, addresses, etc)

■ Any GPT can be flashed through Odin
❗ No authentication required

Source: https://en.wikipedia.org/wiki/GUID_Partition_Table

■ PIT and GPT are used for the same thing: to describe partitions
■ PIT is mainly used for Samsung features in LK

● Odin, JPEGs loading, etc

■ And GPT is used the rest of the time

❗ We can't just rename a partition to up_param to flash our JPEGs

38

GPT vs PIT

pit_address = 0x4400;
exist = get_part_table("pit");
if (exist == 0) {
 pit_address = get_partition_offset("pit");
}
type = storage(3);
iVar1 = storage_read(type,0x4000,(int)pit_address,

 (int)((ulonglong)pit_address >> 0x20),
 &ODIN_TEMP_BUF_PIT,0x4000);

39

PIT Loading

pit_address = 0x4400;
exist = get_part_table("pit");
if (exist == 0) {
 pit_address = get_partition_offset("pit");
}
type = storage(3);
iVar1 = storage_read(type,0x4000,(int)pit_address,

 (int)((ulonglong)pit_address >> 0x20),
 &ODIN_TEMP_BUF_PIT,0x4000);

40

PIT Loading

PIT default address

pit_address = 0x4400;
exist = get_part_table("pit");
if (exist == 0) {
 pit_address = get_partition_offset("pit");
}
type = storage(3);
iVar1 = storage_read(type,0x4000,(int)pit_address,

 (int)((ulonglong)pit_address >> 0x20),
 &ODIN_TEMP_BUF_PIT,0x4000);

41

PIT Loading

PIT default address

Check for pit partition
And use it if it exists

pit_address = 0x4400;
exist = get_part_table("pit");
if (exist == 0) {
 pit_address = get_partition_offset("pit");
}
type = storage(3);
iVar1 = storage_read(type,0x4000,(int)pit_address,

 (int)((ulonglong)pit_address >> 0x20),
 &ODIN_TEMP_BUF_PIT,0x4000);

42

PIT Loading

PIT default address

Uses GPT table 😈

43

Strategy to Bypass Odin Authentication

44

Strategy to Bypass Odin Authentication

45

Strategy to Bypass Odin Authentication

46

Strategy to Bypass Odin Authentication

47

Strategy to Bypass Odin Authentication

48

To sum up

■ SVE-2024-0234/CVE-2024-20865
✅ Can bypass authentication in Odin
✅ We can flash anything in the eMMC
✅ Including our up_param partition
✅ Seems to impact most Samsung using

Mediatek SoCs

49

Chaining Everything Together

50

To Conclude

■ Chain based on 2 vulnerabilities
✅ Leads to code execution in LK
✅ Persistent (it survives reboots and factory reset)
✅ Impacts Samsung devices based on Mediatek SoCs

● Including those for which MTKClient does not work

✅ Can be triggered over USB thanks to Odin authentication bypass
✅ Gives full control over Normal World EL1/0
❌ Still no access to secrets stored in Secure World

51

Targeting ARM Trusted Firmware

52

Targeting ARM Trusted Firmware

53

Communication between NSW and SW

54

Vulnerability Research on ATF

■ Motivation:
● Highest privilege level → A bug here can be devastating
● Reachable from Normal World through SMCs

■ Code is simple
■ Interacts a lot with HW through unknown registers

● Fuzzing not particularly interesting in this case
■ Our approach: focus on static analysis

55

SMC Handlers

if ((is_secure & 1) == 0) {

 puVar1 = mediatek_plat_sip_handler_secure(smc_id,arg1,arg2,arg3

,arg4,arg5,output);

 return puVar1;

}

[...]

if ((origin < 2) && (IN_BOOTLOADER == 0)) {

 puVar1 = mediatek_plat_sip_handler_kernel(smc_id,arg1,arg2,arg3

,arg4,arg5,output);

 return puVar1;

}

56

SMC Handlers

if ((is_secure & 1) == 0) {

 puVar1 = mediatek_plat_sip_handler_secure(smc_id,arg1,arg2,arg3

,arg4,arg5,output);

 return puVar1;

}

[...]

if ((origin < 2) && (IN_BOOTLOADER == 0)) {

 puVar1 = mediatek_plat_sip_handler_kernel(smc_id,arg1,arg2,arg3

,arg4,arg5,output);

 return puVar1;

}

Arguments of SMC

57

Leaking from Virtual Address Space

uint* global_array = (uint *)0x4ce2f578;

[...]

if (smcid == 0x82000526) {

 out_value = global_array[arg1 * 4];

 goto exit;

}

[...]

 output[2] = out_value;

 output[1] = arg1;

 *output = 0;

 return output;

58

Leaking from Virtual Address Space

uint* global_array = (uint *)0x4ce2f578;

[...]

if (smcid == 0x82000526) {

 out_value = global_array[arg1 * 4];

 goto exit;

}

[...]

 output[2] = out_value;

 output[1] = arg1;

 *output = 0;

 return output;

Fully controlled by
attacker

59

Leaking from Virtual Address Space

uint* global_array = (uint *)0x4ce2f578;

[...]

if (smcid == 0x82000526) {

 out_value = global_array[arg1 * 4];

 goto exit;

}

[...]

 output[2] = out_value;

 output[1] = arg1;

 *output = 0;

 return output;

Fully controlled by
attacker… And never

checked

60

■ In mediatek_plat_sip_handler_kernel, reachable from Linux Kernel
■ To exploit it, send the SMC 0x82000526 with

● (arbitrary_address - 0x4ce2f578) / 4
■ Bug introduced by Samsung only in some devices (including A225F)
■ It leaks 4 bytes from ATF virtual address space

● We can read all the internal data of ATF
● But we can't leak anything from other SW components

SVE-2023-2215 (CVE-2024-20820)

61

SVE-2023-2215 (CVE-2024-20820)

62

SMC 0x8200022A calls function spm_actions

Mapping Any Physical Address in ATF

if (smc_id == 0x8200022a) {

 spm_actions(arg1,arg2,arg3);

63

SMC 0x8200022A calls function spm_actions

Mapping Any Physical Address in ATF

undefined * spm_actions(ulong cmdid,undefined *addr,ulong size) {

 switch(cmdid & 0xffffffff) {

[...]

 case 1:

 if (size < 0x100001) {

 mmap_wrap(addr,size);

[...]

}

64

SMC 0x8200022A calls function spm_actions

Mapping Any Physical Address in ATF

undefined * spm_actions(ulong cmdid,undefined *addr,ulong size) {

 switch(cmdid & 0xffffffff) {

[...]

 case 1:

 if (size < 0x100001) {

 mmap_wrap(addr,size);

[...]

}

Arguments fully
controlled

65

SMC 0x8200022A calls function spm_actions

Mapping Any Physical Address in ATF

undefined * spm_actions(ulong cmdid,undefined *addr,ulong size) {

 switch(cmdid & 0xffffffff) {

[...]

 case 1:

 if (size < 0x100001) {

 mmap_wrap(addr,size);

[...]

}

Arguments fully
controlled

And still no checks on
the address

66

SMC 0x8200022A calls function spm_actions

Mapping Any Physical Address in ATF

undefined * spm_actions(ulong cmdid,undefined *addr,ulong size) {

 switch(cmdid & 0xffffffff) {

[...]

 case 1:

 if (size < 0x100001) {

 mmap_wrap(addr,size);

[...]

}
And still no checks on

the address

Physical Address

67

■ Also in mediatek_plat_sip_handler_kernel
■ Will mmap with physical base address to the same virtual address

● … however we can't munmap
○ So we are limited to 8 consecutives mmaps
○ Meaning we can leak up to 8MB of data

■ Introduced by Mediatek (impacts plenty of Mediatek SoCs)
■ Chained to our leak, we can read everything in Secure World

● Including TEEGRIS

CVE-2024-20021

68

Can we use this vulnerability to leak
Keystore keys?

69

■ Key storage and crypto services
■ Keys are stored as key blobs
■ Three protection levels:

● Software only
● TEE (default)
● Hardware-backed (StrongBox)

■ Raw key should never leave protected environment

Android Keystore system

70

Android Keystore system

71

Our PoC

1. Import a key into the Android Keystore
2. Encrypt using that key
3. Stop the execution after BeginOperation is called

○ To makes sure the key stays in memory

4. Leak the identified region of memory
5. Try all possible keys from from leak to decrypt ciphertext

72

Demo

■ We presented 4 vulnerabilities leading to
● Authentication bypass in Odin
● Code execution with persistence in LK
● Leak of SW memory, including Keystore keys

■ Impact low/middle end Samsung devices
● Vulnerabilities are simple, and yet super impactful
● No mitigations in LK nor ATF

■ All the vulnerabilities are now fixed

73

Conclusion

contact@quarkslab.com

@max_r_b
@DamianoMelotti
@pwissenlit

Thank you!

