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■ Samsung Galaxy A225F
● Cheap (~300€)
● Mediatek SoC MT6769V
● Main OS: Android
● Mix of Mediatek and Samsung code
● Trustzone OS: TEEGRIS
● Secure Boot Bypass using MTKClient1

→ making debugging easier

Our Device

[1]: https://github.com/bkerler/mtkclient
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Mediatek Secure Boot Process
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Mediatek Secure Boot Process
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Little Kernel (LK)

■ Open-source OS2

■ Common as bootloader in the Android world
■ Allows to boot Android or other modes 

(Recovery)
■ Implements Android Verified Boot v2

● Verification of Android images
● Anti-rollback

[2]: https://github.com/littlekernel/lk
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■ Samsung modified LK to include:
● The Odin recovery protocol
● Knox Security Bit
● Etc…
● And a JPEG parser/renderer

■ This version is closed source

Little Kernel by Samsung
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Why Targeting the JPEG Loader/Parser

■ JPEGs are placed in a TAR archive in the up_param partition
■ The archive is signed… but the signature is not checked at boot
❗ Anyone able to write the flash can modify these JPEGs

■ Parsing JPEG is known to be hard (cf. LogoFail3)

[3]: https://www.binarly.io/blog/inside-the-logofail-poc-from-integer-overflow-to-arbitrary-code-execution
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Why Targeting the JPEG Loader/Parser

■ JPEGs are placed in a TAR archive in the up_param partition
■ The archive is signed… but the signature is not checked at boot
❗ Anyone able to write the flash can modify these JPEGs

■ Parsing JPEG is known to be hard (cf. LogoFail3)

How are these JPEGs loaded by LK?

[3]: https://www.binarly.io/blog/inside-the-logofail-poc-from-integer-overflow-to-arbitrary-code-execution
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Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000);
if (_JPEG_BUF == 0) {
  log("%s: img buf alloc fail\n","drawimg");
  uVar2 = 0xffffffff;
}
else {
  memset(_JPEG_BUF,0,0x100000);
  iVar1 = read_jpeg_file(file_name,_JPEG_BUF,0);
  if (iVar1 == 0) {
    log("%s: read %s from up_param as 0, size\n","drawimg",file_name);
    uVar2 = 0xffffffff;
  }
// ...

pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * 0x3c),
   *(undefined4 *)(&DAT_4c510800 + param_1 * 0x3c),
   0x2d0,0x640,1,_JPEG_BUF,iVar1);
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Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000);
if (_JPEG_BUF == 0) {
  log("%s: img buf alloc fail\n","drawimg");
  uVar2 = 0xffffffff;
}
else {
  memset(_JPEG_BUF,0,0x100000);
  iVar1 = read_jpeg_file(file_name,_JPEG_BUF,0);
  if (iVar1 == 0) {
    log("%s: read %s from up_param as 0, size\n","drawimg",file_name);
    uVar2 = 0xffffffff;
  }
// ...

pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * 0x3c),
   *(undefined4 *)(&DAT_4c510800 + param_1 * 0x3c),
   0x2d0,0x640,1,_JPEG_BUF,iVar1);

Heap allocation of 
constant size for the 
buffer
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Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000);
if (_JPEG_BUF == 0) {
  log("%s: img buf alloc fail\n","drawimg");
  uVar2 = 0xffffffff;
}
else {
  memset(_JPEG_BUF,0,0x100000);
  iVar1 = read_jpeg_file(file_name,_JPEG_BUF,0);
  if (iVar1 == 0) {
    log("%s: read %s from up_param as 0, size\n","drawimg",file_name);
    uVar2 = 0xffffffff;
  }
// ...

pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * 0x3c),
   *(undefined4 *)(&DAT_4c510800 + param_1 * 0x3c),
   0x2d0,0x640,1,_JPEG_BUF,iVar1);

Read the JPEG in
the buffer
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Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000);
if (_JPEG_BUF == 0) {
  log("%s: img buf alloc fail\n","drawimg");
  uVar2 = 0xffffffff;
}
else {
  memset(_JPEG_BUF,0,0x100000);
  iVar1 = read_jpeg_file(file_name,_JPEG_BUF,0);
  if (iVar1 == 0) {
    log("%s: read %s from up_param as 0, size\n","drawimg",file_name);
    uVar2 = 0xffffffff;
  }
// ...

pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * 0x3c),
   *(undefined4 *)(&DAT_4c510800 + param_1 * 0x3c),
   0x2d0,0x640,1,_JPEG_BUF,iVar1);

Parse and render
the JPEG
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Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000);
if (_JPEG_BUF == 0) {
  log("%s: img buf alloc fail\n","drawimg");
  uVar2 = 0xffffffff;
}
else {
  memset(_JPEG_BUF,0,0x100000);
  iVar1 = read_jpeg_file(file_name,_JPEG_BUF,0);
  if (iVar1 == 0) {
    log("%s: read %s from up_param as 0, size\n","drawimg",file_name);
    uVar2 = 0xffffffff;
  }
// ...

pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * 0x3c),
   *(undefined4 *)(&DAT_4c510800 + param_1 * 0x3c),
   0x2d0,0x640,1,_JPEG_BUF,iVar1);
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Heap Overflow in JPEG Loading

■ read_jpeg_file takes a size as 3rd argument
■ It triggers an error if the file does not fit the size provided

file_size = string_to_int(tar_header_file.size,0,8);
if (size != 0 && size < file_size) {
    file_size = print("read fail! (%d < %d)\n",size,file_size,size);
    return file_size;
}
iVar1 = read(data_addr,index + 1,file_size,outbuf);
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Heap Overflow in JPEG Loading

■ read_jpeg_file takes a size as 3rd argument
■ It triggers an error if the file does not fit the size provided
👉 Unless the size provided is 0…

file_size = string_to_int(tar_header_file.size,0,8);
if (size != 0 && size < file_size) {
    file_size = print("read fail! (%d < %d)\n",size,file_size,size);
    return file_size;
}
iVar1 = read(data_addr,index + 1,file_size,outbuf);
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Is it exploitable?
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Exploiting a Heap Overflow in Little Kernel

■ The heap algorithm is miniheap 
● It relies on a doubly linked list

■ Chunks are in a unique memory pool
● An overflow may overwrite the metadata 

of next chunk

struct free_chunk_head {

   struct free_chunk_head *prev;

   struct free_chunk_head *next;

   size_t len;

}
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From Heap Overflow to Arbitrary Write

■ After allocation, a chunk is removed from the free list
■ next and prev are dereferenced to change the corresponding nodes

⇒ Controlling a free chunk leads to a write-what-where

node->next->prev = node->prev;

node->prev->next = node->next;

node->prev = node->next = 0;
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From Heap Overflow to Arbitrary Write

■ After allocation, a chunk is removed from the free list
■ next and prev are dereferenced to change the corresponding nodes

⇒ Controlling a free chunk leads to a write-what-where
❗ Both values must writable addresses

node->next->prev = node->prev;

node->prev->next = node->next;

node->prev = node->next = 0;
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From Arbitrary Write to Code Execution

Important details about LK

❌ No ASLR
❌ No canaries
❌ No bounds checks in the heap algorithm
❌ Heap is executable!
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From Arbitrary Write to Code Execution

Important details about LK

❌ No ASLR
❌ No canaries
❌ No bounds checks in the heap algorithm
❌ Heap is executable!

Exploit strategy becomes simple:
1. Overwrite a pointer that the code will jump to
👉 the return address in the stack

2. Make it point to a shellcode in our JPEG buffer
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Exploiting a Heap Overflow in Little Kernel
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Exploiting a Heap Overflow in Little Kernel
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Exploiting a Heap Overflow in Little Kernel
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Exploiting a Heap Overflow in Little Kernel
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Exploiting a Heap Overflow in Little Kernel
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Exploiting a Heap Overflow in Little Kernel
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Exploiting a Heap Overflow in Little Kernel
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● SVE-2023-2079/CVE-2024-20832
✅ Leads to code execution
✅ Persistent (it survives reboots and factory reset)
✅ Gives full control over Normal World EL1/0
✅ Impacts Samsung devices based on Mediatek SoCs

■ Including those for which MTKClient does not work

❌ Requires to flash the up_param partition

To sum-up
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How to write our JPEGs in the 
up_param partition?
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Odin: Samsung's recovery protocol

■ Odin is implemented in LK
■ It is available through the Download Mode

● It allows to flash partitions over USB
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Odin: Samsung's recovery protocol

■ Images are authenticated and contain a footer signature
■ Two internal structures indicate which partitions to flash

● The Partition Information Table (PIT)
● A global structure indicating which partitions to authenticate
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Odin: Partition Information Table

■ PIT is retrieved statically from the eMMC
■ It indicates where partitions are stored

● Memory type, block count, etc

■ A partition not present in PIT can't be flashed
■ PIT can be updated, but requires a signed 

image

--- Entry #1 ---

Binary Type: 0 (AP)

Device Type: 2 (MMC)

Identifier: 70

Attributes: Read/Write

Update Attributes: 1

Block Size/Offset: 0

Block Count: 34

Partition Name: pgpt

…
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Odin: Image Authentication

■ A global array indicates how an image should be authenticated
■ An image not present in this array will not be authenticated

● (Except for some specific images)

■ Comparing this array with PIT gives a set of images flashable without 
authentication

md5hdr, md_udc, pgpt, sgpt, and vbmeta_vendor
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GPT: GUID Partition Table

■ pgpt points to the Primary GPT Header
■ sgpt points to the Secondary GPT Header
■ Similarly to the PIT, it describes the partitions

○ (Names, sizes, addresses, etc)

■ Any GPT can be flashed through Odin
❗ No authentication required

Source: https://en.wikipedia.org/wiki/GUID_Partition_Table



■ PIT and GPT are used for the same thing: to describe partitions
■ PIT is mainly used for Samsung features in LK

● Odin, JPEGs loading, etc

■ And GPT is used the rest of the time

❗ We can't just rename a partition to up_param to flash our JPEGs

38

GPT vs PIT



pit_address = 0x4400;
exist = get_part_table("pit");
if (exist == 0) {
  pit_address = get_partition_offset("pit");
}
type = storage(3);
iVar1 = storage_read(type,0x4000,(int)pit_address,

  (int)((ulonglong)pit_address >> 0x20),
                      &ODIN_TEMP_BUF_PIT,0x4000);
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PIT Loading



pit_address = 0x4400;
exist = get_part_table("pit");
if (exist == 0) {
  pit_address = get_partition_offset("pit");
}
type = storage(3);
iVar1 = storage_read(type,0x4000,(int)pit_address,

  (int)((ulonglong)pit_address >> 0x20),
                      &ODIN_TEMP_BUF_PIT,0x4000);
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PIT Loading

PIT default address



pit_address = 0x4400;
exist = get_part_table("pit");
if (exist == 0) {
  pit_address = get_partition_offset("pit");
}
type = storage(3);
iVar1 = storage_read(type,0x4000,(int)pit_address,

  (int)((ulonglong)pit_address >> 0x20),
                      &ODIN_TEMP_BUF_PIT,0x4000);
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PIT Loading

PIT default address

Check for pit partition
And use it if it exists



pit_address = 0x4400;
exist = get_part_table("pit");
if (exist == 0) {
  pit_address = get_partition_offset("pit");
}
type = storage(3);
iVar1 = storage_read(type,0x4000,(int)pit_address,

  (int)((ulonglong)pit_address >> 0x20),
                      &ODIN_TEMP_BUF_PIT,0x4000);
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PIT Loading

PIT default address

Uses GPT table 😈
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Strategy to Bypass Odin Authentication
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Strategy to Bypass Odin Authentication
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Strategy to Bypass Odin Authentication
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Strategy to Bypass Odin Authentication
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Strategy to Bypass Odin Authentication
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To sum up

■ SVE-2024-0234/CVE-2024-20865
✅ Can bypass authentication in Odin
✅ We can flash anything in the eMMC
✅ Including our up_param partition
✅ Seems to impact most Samsung using 

Mediatek SoCs
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Chaining Everything Together
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To Conclude

■ Chain based on 2 vulnerabilities
✅ Leads to code execution in LK
✅ Persistent (it survives reboots and factory reset)
✅ Impacts Samsung devices based on Mediatek SoCs

● Including those for which MTKClient does not work

✅ Can be triggered over USB thanks to Odin authentication bypass
✅ Gives full control over Normal World EL1/0
❌ Still no access to secrets stored in Secure World
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Targeting ARM Trusted Firmware
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Targeting ARM Trusted Firmware
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Communication between NSW and SW
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Vulnerability Research on ATF

■ Motivation:
● Highest privilege level → A bug here can be devastating
● Reachable from Normal World through SMCs

■ Code is simple
■ Interacts a lot with HW through unknown registers

● Fuzzing not particularly interesting in this case
■ Our approach: focus on static analysis
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SMC Handlers

if ((is_secure & 1) == 0) {

  puVar1 = mediatek_plat_sip_handler_secure(smc_id,arg1,arg2,arg3

,arg4,arg5,output);

  return puVar1;

}

[...]

if ((origin < 2) && (IN_BOOTLOADER == 0)) {

  puVar1 = mediatek_plat_sip_handler_kernel(smc_id,arg1,arg2,arg3

,arg4,arg5,output);

  return puVar1;

}
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SMC Handlers

if ((is_secure & 1) == 0) {

  puVar1 = mediatek_plat_sip_handler_secure(smc_id,arg1,arg2,arg3

,arg4,arg5,output);

  return puVar1;

}

[...]

if ((origin < 2) && (IN_BOOTLOADER == 0)) {

  puVar1 = mediatek_plat_sip_handler_kernel(smc_id,arg1,arg2,arg3

,arg4,arg5,output);

  return puVar1;

}

Arguments of SMC
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Leaking from Virtual Address Space

uint* global_array = (uint *)0x4ce2f578;

[...]

if (smcid == 0x82000526) {

    out_value = global_array[arg1 * 4];

    goto exit;

}

[...]

    output[2] = out_value;

    output[1] = arg1;

    *output = 0;

    return output;
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Leaking from Virtual Address Space

uint* global_array = (uint *)0x4ce2f578;

[...]

if (smcid == 0x82000526) {

    out_value = global_array[arg1 * 4];

    goto exit;

}

[...]

    output[2] = out_value;

    output[1] = arg1;

    *output = 0;

    return output;

Fully controlled by 
attacker
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Leaking from Virtual Address Space

uint* global_array = (uint *)0x4ce2f578;

[...]

if (smcid == 0x82000526) {

    out_value = global_array[arg1 * 4];

    goto exit;

}

[...]

    output[2] = out_value;

    output[1] = arg1;

    *output = 0;

    return output;

Fully controlled by 
attacker… And never 

checked
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■ In mediatek_plat_sip_handler_kernel, reachable from Linux Kernel
■ To exploit it, send the SMC 0x82000526 with

● (arbitrary_address - 0x4ce2f578) / 4
■ Bug introduced by Samsung only in some devices (including A225F)
■ It leaks 4 bytes from ATF virtual address space

● We can read all the internal data of ATF
● But we can't leak anything from other SW components 

SVE-2023-2215 (CVE-2024-20820)
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SVE-2023-2215 (CVE-2024-20820)
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SMC 0x8200022A calls function spm_actions

Mapping Any Physical Address in ATF

if (smc_id == 0x8200022a) {

    spm_actions(arg1,arg2,arg3);
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SMC 0x8200022A calls function spm_actions

Mapping Any Physical Address in ATF

undefined * spm_actions(ulong cmdid,undefined *addr,ulong size) {

    switch(cmdid & 0xffffffff) {

[...]

      case 1:

        if (size < 0x100001) {

            mmap_wrap(addr,size);

[...]

}



64

SMC 0x8200022A calls function spm_actions

Mapping Any Physical Address in ATF

undefined * spm_actions(ulong cmdid,undefined *addr,ulong size) {

    switch(cmdid & 0xffffffff) {

[...]

      case 1:

        if (size < 0x100001) {

            mmap_wrap(addr,size);

[...]

}

Arguments fully 
controlled
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SMC 0x8200022A calls function spm_actions

Mapping Any Physical Address in ATF

undefined * spm_actions(ulong cmdid,undefined *addr,ulong size) {

    switch(cmdid & 0xffffffff) {

[...]

      case 1:

        if (size < 0x100001) {

            mmap_wrap(addr,size);

[...]

}

Arguments fully 
controlled

And still no checks on 
the address



66

SMC 0x8200022A calls function spm_actions

Mapping Any Physical Address in ATF

undefined * spm_actions(ulong cmdid,undefined *addr,ulong size) {

    switch(cmdid & 0xffffffff) {

[...]

      case 1:

        if (size < 0x100001) {

            mmap_wrap(addr,size);

[...]

}
And still no checks on 

the address

Physical Address
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■ Also in mediatek_plat_sip_handler_kernel
■ Will mmap with physical base address to the same virtual address

● … however we can't munmap
○ So we are limited to 8 consecutives mmaps
○ Meaning we can leak up to 8MB of data

■ Introduced by Mediatek (impacts plenty of Mediatek SoCs)
■ Chained to our leak, we can read everything in Secure World

● Including TEEGRIS

CVE-2024-20021
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Can we use this vulnerability to leak 
Keystore keys?
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■ Key storage and crypto services
■ Keys are stored as key blobs
■ Three protection levels:

● Software only
● TEE (default)
● Hardware-backed (StrongBox)

■ Raw key should never leave protected environment

Android Keystore system
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Android Keystore system
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Our PoC

1. Import a key into the Android Keystore
2. Encrypt using that key
3. Stop the execution after BeginOperation is called

○ To makes sure the key stays in memory

4. Leak the identified region of memory
5. Try all possible keys from from leak to decrypt ciphertext
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Demo



■ We presented 4 vulnerabilities leading to
● Authentication bypass in Odin
● Code execution with persistence in LK
● Leak of SW memory, including Keystore keys

■ Impact low/middle end Samsung devices
● Vulnerabilities are simple, and yet super impactful
● No mitigations in LK nor ATF

■ All the vulnerabilities are now fixed
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Conclusion
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