When Samsung Meets Mediatek

The story of a small bug chain

Maxime Rossi Bellom
Raphael Neveu
Gabrielle Viala

Quarkslab



Who we are

m Maxime Rossi Bellom @max r b

m Security researcher

and R&D leader @ Quarkslab
m Working on mobile and embedded

software security

Raphaél Neveu

Gabrielle Viala @pwissenlit
Security researcher

and R&D leader @ Quarkslab
Playing with low-level stuff

Security researcher @ Quarkslab
Working on low-level mobile

security



Attacking SP derivation

Dissecting the Modern
. ~ Need to target the TEE
Android Data Encryption Two altematives
o Keymaster TA (accessing the first AES key)
Scheme

o Gatekeeper TA (validating credentials and minting auth tokens)

de/<uid>/spblob/<handie>.spblob |

(if authentication is successful)

Maxime Rossi Bellom
Damiano Melotti

—
key—>y/ AES deccypt /

AT p— 7 ['application—id"| _
/PES deccupt —key—/oHAS12L l"‘:‘:p‘lmm epplicationd
%

— A5

Ouarkslab SYNTHETIC
PASSWORD |

Bruteforce of the password

pwd = generate new password

token = scrypt(pwd, R, N, P, Salt)
Application_id = token || Prehashed value PeoH
Key = SHA512("application_id" || application_i At b scocaresocors36s6803Fiso Quarkslab

@ Securmay ko

AES_Decrypt(value_from_keymaster, key)

$ python3 bruteforce-tee.py

workers will cycle through the last 5 chars
Found it: 1234

the plaintext is '1234'

Done in 18.831058311462402s

Throughput: 1478.448992816657 tries/s




Our Device

m Samsung Galaxy A225F

Cheap (Y300€)

Mediatek SoC MT6769V

Main OS: Android

Mix of Mediatek and Samsung code

Trustzone OS: TEEGRIS

Secure Boot Bypass using MTKClient'
=+ making debugging easier

[1]: https://github.com/bkerler/mtkclient




Mediatek Secure Boot Process

EL3 , ELI , ELO

ARM Trusted
Firmware

Boot KON Preloader TEEGRIS

Secure World

Normal World

LK Android




Mediatek Secure Boot Process

EL3 , ELI , ELO

ARM Trusted
Firmware

Boot ROM Preloader TEEGRIS

Secure World

i~

Normal World




Little Kernel (LK)

Open-source OS2

Common as bootloader in the Android world
Allows to boot Android or other modes
(Recovery)

m Implements Android Verified Boot v2

e Verification of Android images
e Anti-rollback

[2]: https://github.com/littlekernel/lk



Little Kernel by Samsung

m Samsung modified LK to include:

The Odin recovery protocol
Knox Security Bit

Etc...

And a JPEG parser/renderer

m This version is closed source

A

Security Error 245512

This phone has been
flashed with unauthorized software &
is locked. Call your mobile operator

for additional support. Please note
that repair/return for this issue may
have additional cost.

BT RE T RN G TR BIE, 15
AEMIERY & AR
ST RE B, EIIFR A EREE TR AT
BJRERE B1TAE, B



Why Targeting the JPEG Loader/Parser

m JPEGs are placed in a TAR archive in the up_param partition

m The archive is signed... but the signature is not checked at boot
| Anyone able to write the flash can modify these JPEGs

m Parsing JPEG is known to be hard (cf. LogoFail®)

[3]: https://www.binarly.io/blog/inside-the-logofail-poc-from-integer-overflow-to-arbitrary-code-execution 9



Why Targeting the JPEG Loader/Parser

m JPEGs are placed in a TAR archive in the up_param partition

m The archive is signed... but the signature is not checked at boot
| Anyone able to write the flash can modify these JPEGs

m Parsing JPEG is known to be hard (cf. LogoFail®)

How are these JPEGs loaded by LK?

[3]: https://www.binarly.io/blog/inside-the-logofail-poc-from-integer-overflow-to-arbitrary-code-execution 10



Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000) ;
if (_JPEG_BUF == 0) {
log("%s: img buf alloc fail\n", "drawimg");
uVar2 = exffffffff;
}
else {
memset (_JPEG_BUF,0,0x100000) ;
iVar1 = read_jpeg_file(file_name, _JPEG_BUF,0);
if (iVar1 == 0) {
log("%s: read %s from up_param as 0, size\n", "drawimg", file_name);
uVar2 = exffffffff;

}
/1

pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * ©x3c),

*(undefined4 *)(&DAT_4c510800 + param_1 * ©x3c),
0x2d0,0x640,1, _JPEG_BUF,ivVar1);

1



Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000);
Heap allocation of if (_JPEG_BUF == 0) { | |
. log("%s: img buf alloc fail\n", "drawimg");
constant size for the war2 = exffffffff:
buffer )
else {

memset (_JPEG_BUF,0,0x100000) ;

iVar1 = read_jpeg_file(file_name, _JPEG_BUF,0);

if (iVar1 == 0) {
log("%s: read %s from up_param as 0, size\n", "drawimg", file_name);
uVar2 = exffffffff;

}
/] ...

pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * ©x3c),

*(undefined4 *)(&DAT_4c510800 + param_1 * ©x3c),
0x2d0,0x640,1, _JPEG_BUF,ivVar1);

12



Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000);

if (_JPEG_BUF == 0) {
log("%s: img buf alloc fail\n", "drawimg");
uvar2 = exffffffff;

}

else {

memset(=JPEG=BUF,@,8X108080);

iVar1 = read_jpeg_file(file_name, _JPEG_BUF,0);

Read the JPEG in if (ivar1l == @) {

—pl log("%s: read %s from up_param as 0, size\n", "drawimg", file_name);
the buffer war2 = xfFFFFFff;

/
pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * ©x3c),

*(undefined4 *)(&DAT_4c510800 + param_1 * ©x3c),
0x2d0,0x640,1, _JPEG_BUF,ivVar1);

13



Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000) ;
if (_JPEG_BUF == 0) {
log("%s: img buf alloc fail\n", "drawimg");
uVar2 = exffffffff;
}
else {
memset (_JPEG_BUF,0,0x100000) ;
iVar1 = read_jpeg_file(file_name, _JPEG_BUF,0);
if (iVar1 == 0) {
log("%s: read %s from up_param as 0, size\n", "drawimg", file_name);
uVar2 = exffffffff;

}
/] ...
Parse and render pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * 0x3c),
— *(undefined4 *)(&DAT_4c510800 + param_1 * ©x3c),
the JPEG 0x2d0,0x640,1, _JPEG_BUF,ivVar1);

14



Heap Overflow in JPEG Loading

_JPEG_BUF = alloc(0x100000) ;
if (_JPEG_BUF == 0) {
log("%s: img buf alloc fail\n", "drawimg");
uVar2 = exffffffff; -
}
else {
memset (_JPEG_BUF,0,0x100000) ;
ivar1 = read_jpeg_file(file_name,_JPEG_BUF’:I;
if (iVar1 == 0) {
log("%s: read %s from up_param as 0, size\n", "drawimg", file_name);
uVar2 = exffffffff;
}
//

pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * ©x3c),

*(undefined4 *)(&DAT_4c510800 + param_1 * ©x3c),
0x2d0,0x640,1, _JPEG_BUF,ivVar1);

15



Heap Overflow in JPEG Loading

m read_jpeg_file takes a size as 3™ argument
m [ttriggers an error if the file does not fit the size provided

file_size = string_to_int(tar_header_file.size,9,8);
if (size !'= 0 && size < file_size) {

file_size = print("read fail! (%d < %d)\n",size,file_size,size);
return file_size;

}

iVar1l = read(data_addr,index + 1,file_size,outbuf);

16



Heap Overflow in JPEG Loading

m read_jpeg_file takes a size as 3™ argument

m It triggers an error if the file does not fit the size provided
Unless the size provided is O...

file_size = string_to_int(tar_header_file.size,9,8);

if (size '= 0 && size < file_size) { |€—
file_size = print("read fail! (%d < %d)\n",size,file_size,size);
return file_size;

}

iVar1l = read(data_addr,index + 1,file_size,outbuf);

17



Is it exploitable?



Exploiting a Heap Overflow in Little Kernel

struct free_chunk_head {

m The heap algorithm is miniheap
struct free_chunk_head *prev;

e |trelies on a doubly linked list

m Chunks are in a unique memory pool
e An overflow may overwrite the metadata
of next chunk }

T

struct free_chunk_head *next;

size_t 1len;

Prev

Next
Prev
Next
Prev
Next




From Heap Overflow to Arbitrary Write

m After allocation, a chunk is removed from the free list
m nhext and prev are dereferenced to change the corresponding nodes
= Controlling a free chunk leads to a write-what-where

node->prev;

node->next->prev
node->prev->next = node->next;

node->prev = node->next = 0;

20



From Heap Overflow to Arbitrary Write

m After allocation, a chunk is removed from the free list
m nhext and prev are dereferenced to change the corresponding nodes
= Controlling a free chunk leads to a write-what-where
| Both values must writable addresses

node->prev;

node->next->prev
node->prev->next = node->next;

node->prev = node->next = 0;

21



From Arbitrary Write to Code Execution

Important details about LK

No ASLR

No canaries

No bounds checks in the heap algorithm
Heap is executable!

XX XX

22



From Arbitrary Write to Code Execution

Important details about LK

X No ASLR

X No canaries

Y No bounds checks in the heap algorithm
X Heap is executable!

Exploit strategy becomes simple:
1. Overwrite a pointer that the code will jump to
the return address in the stack
2. Make it point to a shellcode in our JPEG buffer 23



Exploiting a Heap Overflow in Little Kernel

Stack

Step |
JPEG Buffer
Allocation

IR

Chunk 24



Exploiting a Heap Overflow in Little Kernel

Stack

Step 2
Reading The Jpeg

25



Exploiting a Heap Overflow in Little Kernel

Stack

Step 2
Reading The Jpeg

Prev.

Chunk 26



Exploiting a Heap Overflow in Little Kernel

Stack

Step 2
Reading The Jpeg

Chunk 27



Exploiting a Heap Overflow in Little Kernel

Stack

Step 2
Reading The Jpeg
And overwriting next chunk

28



Exploiting a Heap Overflow in Little Kernel

Stack

Step 2%
Making a fake chunk Return
point to the stack Address

S onellcode|

7 ! ;3 ., ,?} ;;f_f4/?;4?M;7/ o’
JPEG
Buffer Fake Free Free

Chunk Chunk 29

Prev




Exploiting a Heap Overflow in Little Kernel

Stack

Step 3
After the next
allocation

_ Shelicode
 address

v

JPEG '
Buffer Fake Free Free

Chunk Chunk 30




° SVE 2023-2079/CVE-2024-20832

Leads to code execution
Persistent (it survives reboots and factory reset)
Gives full control over Normal World EL1/0

Impacts Samsung devices based on Mediatek SoCs
m Including those for which MTKClient does not work

X Requires to flash the up_param partition

31



How to write our JPEGs in the
up_param partition?



Odin: Samsung's recovery protocol

m Odinis implemented in LK Downloading..
. . Clzcx
m Itis available through the Download Mode e
. Do not turn off target
e |t allows to flash partitions over USB mele 1X| O

Do not disconnect USB cable

during the software update!

Volume Down Key + Side key for more than 7 secs
: Cancel (restart phone)

=E0ot 7|+ ST HE 7= 0|4 : FA (FUE CHA| 7))

33



Odin: Samsung's recovery protocol

Images are authenticated and contain a footer signature

Two internal structures indicate which partitions to flash
e The Partition Information Table (PIT)
e A global structure indicating which partitions to authenticate

SignerVer02
65731866R
A225FXXU6DWES. ..

20230524124700. .

SM-A225F_CIS_SER
_MKEYO
SRPUB15B006

34



Odin: Partition Information Table

PIT is retrieved statically from the eMMC

It indicates where partitions are stored
e Memory type, block count, etc

A partition not present in PIT can't be flashed

PIT can be updated, but requires a signed
image

--- Entry #1 ---
Binary Type: 0 (AP)
Device Type: 2 (MMC)
Identifier: 70
Attributes: Read/Write
Update Attributes: 1
Block Size/Offset: ©
Block Count: 34
Partition Name: pgpt

35



Odin: Image Authentication

m A global array indicates how an image should be authenticated

m Animage not present in this array will not be authenticated
e (Except for some specific images)

m Comparing this array with PIT gives a set of images flashable without
authentication

md5hdr, md_udc, pgpt, sgpt, and vbmeta_vendor

36



GPT: GUID Partition Table

GUID Partition Table Scheme

LBA O Protective MBR

LBA 1 Primary GPT Header

m pgpt points to the Primary GPT Header ey 1[enty 2[enty [y ]
sgpt points to the Secondary GPT Header NN

Similarly to the PIT, it describes the partitions Partition 1
o (Names, sizes, addresses, etc)

m Any GPT can be flashed through Odin
I No authentication required ) Memening pertions
l__IB_A“—“3_3_ __________ Entry ﬂEntry 2 IEntry ﬂEntry 4 E
LA o N Entries 5-128 \::E
(o3[ Secondary GeT weader |

Source: https://en.wikipedia.org/wiki/GUID_Partition_Table 37



m PIT and GPT are used for the same thing: to describe partitions

m PIT is mainly used for Samsung features in LK
e (Odin, JPEGs loading, etc

m And GPT is used the rest of the time

We can't just rename a partition to up_param to flash our JPEGs

38



PIT Loading

pit_address = 0x4400;
exist = get_part_table("pit");
if (exist == 0) {
pit_address = get_partition_offset("pit");

'

type = storage(3);

iVar1 = storage_read(type, 0x4000, (int)pit_address,
(int) ((ulonglong)pit_address >> 0x20),
&0DIN_TEMP_BUF_PIT, 0x4000) ;

39



PIT Loading

PIT default address

pit_address = 0x4400; /

exist = get_part_table("pit");
if (exist == 0) {
pit_address = get_partition_offset("pit");

'

type = storage(3);

iVar1 = storage_read(type, 0x4000, (int)pit_address,
(int) ((ulonglong)pit_address >> 0x20),
&0DIN_TEMP_BUF_PIT, 0x4000) ;

40



PIT Loading

PIT default address

|pit_address = 0x4400; r‘f

exlist = get_part_taB |ez "plt“ ) ; CheCk for p|t partition

if (exist == 0) { /And use it if it exists
pit_address = get_partition_offset("pit");

}

type = storage(3),

iVar1 = storage_read(type, 0x4000, (int)pit_address,
(int) ((ulonglong)pit_address >> 0x20),
&0DIN_TEMP_BUF_PIT, 0x4000) ;

41



PIT Loading

PIT default address

pit_address X Uses GPT table '

exist =|get_part_taBIeZ”p1t”$-q
if (exist == 08) { /

pit_address =|get_partition_offset("pit")|;

)

'

type = storage(3);

iVar1 = storage_read(type, 0x4000, (int)pit_address,
(int) ((ulonglong)pit_address >> 0x20),
&0DIN_TEMP_BUF_PIT, 0x4000) ;

42



PIT

mdShdr

vbmeta_vendor |

up_param

~~a
.
—
~—o
Sl

Flash Memory

PIT default

mdShdr

vbmeta_vendor

up_param

Strategy to Bypass Odin Authentication

GPT

mdShdr

vbmeta_vendor

up_param

43



PIT

mdShdr

vbmeta_vendor |

up_param

~~a
.
—
~—o
Sl

Flash Memory

PIT default

New
up_param

vbmeta_vendor

up_param

Strategy to Bypass Odin Authentication

GPT

mdShdr

vbmeta_vendor

up_param

44



Strategy to Bypass Odin Authentication

PIT Flash Memory GPT
L oy mdShdr
PIT default
vbmeta_vendor vbmeta_vendor
up_param Neuw up_param
up_param
New PIT
New PIT
up_param up_param

vbmeta_vendor

mdShdr

45




Strategy to Bypass Odin Authentication

PIT Flash Memory GPT
md5hde i md5hdr
PIT defaul
vbmeta_vendor pit
up_param Neuw up_param
up_param
New PIT
New PIT
up_param up_param

vbmeta_vendor

mdShdr

46




Strategy to Bypass Odin Authentication

PIT Flash Memory GPT
mdShde GPT md5hdr
PIT default .
vb ta_ve/@r pit
up_param New up_param
/ up_param
/ New PIT
New PIT
up_param up_param

vbmeta_vendor

mdShdr

/ 47




m SVE-2024-0234/CVE-2024-20865

SISISIS

Can bypass authentication in Odin
We can flash anything in the eMMC
Including our up_param partition
Seems to impact most Samsung using
Mediatek SoCs

SAMSUNG
Galaxy

'S Secured by Knox

(AR
SRR CRBALCCCCLNRA
R
R Leee( (LA

48



Chaining Everything Together




To Conclude

m Chain based on 2 vulnerabilities

Leads to code execution in LK
Persistent (it survives reboots and factory reset)

Impacts Samsung devices based on Mediatek SoCs
e Including those for which MTKClient does not work

Can be triggered over USB thanks to Odin authentication bypass
Gives full control over Normal World EL1/0
Still no access to secrets stored in Secure World

50



Targeting ARM Trusted Firmware

EL3 , ELI , ELO

ARM Trusted
Firmware

Boot ROM Preloader S| TEEGRS

Secure World

Normal World

LK Android

51



Targeting ARM Trusted Firmware

Our next target
ELS \ ; ELI , ELO

ARM Trusted
% Firmware

Boot ROM Preloader TEEGRIS

Secure World

Normal World

LK Android

52



Communication between NSW and SW

ELO Userland ELI Kernel ELG oecove Secure ELI Secure ELO
Monitor TA

Be ginOperation()
¥
Keystore
servyice
TEEGRIS
;- Kernel
7 /g /dev/tzdev [SMC > > Keymaster TA
| service) | s 7
v x
tzte_daemon > tziwsock

]

53



Vulnerability Research on ATF

m Motivation:
e Highest privilege level = A bug here can be devastating
e Reachable from Normal World through SMCs
Code is simple
Interacts a lot with HW through unknown registers
e Fuzzing not particularly interesting in this case
m Our approach: focus on static analysis

54



if ((is_secure & 1) == 0) {

puVar1l = mediatek_plat_sip_handler_secure(smc_id,arg1,arg2,arg3
,arg4,arg5,output);
return puVari;
}
[...]
if ((origin < 2) && (IN_BOOTLOADER == 0)) {
puVar1l = mediatek_plat_sip_handler_kernel(smc_id,arg1,arg2,arg3
,arg4,arg5,output);

return puVari;

55



if ((is_secure & 1) == 0) {

puVar1l = mediatek_plat_sip_handler_secure(smc_id,argl1,arg2,arg3

,arg4,arg5,output);
return puVari;

; Arguments of SMC

[...]
if ((origin < 2) && (IN_BOOTLOADER == 0)) { J
puVar1l = mediatek_plat_sip_handler_kernel(smc_id,arg1,arg2,arg3

,arg4,arg5,output);

return puVari;

56



Leaking from Virtual Address Space

uint* global_array = (uint *)0x4ce2f578;

[...]
if (smcid == ©x82000526) {

out_value = global_arrayl[argl * 4];

goto exit;

b

[...]
output[2] = out_value;
output[1] = argil;
*output = 9;

return output;
57



Leaking from Virtual Address Space

uint* global_array = (uint *)0x4ce2f578;

[...]
if (smcid == ©x82000526) {

out_value = global_array|argl| * 4];
goto exit;

Fully controlled by

} attacker
[...]

output[2] = out_value;

output[1] = argil;

*output = 9;

return output;
58



Leaking from Virtual Address Space

uint* global_array = (uint *)0x4ce2f578;

[...]
if (smcid == ©x82000526) {

out_value = global_array|argl| * 4];
goto exit;

Fully controlled by

) attacker... And never
[...] checked
output[2] = out_value;
output[1] = argil; 6 6
*output = 9; —

return output;
59



SVE-2023-2215 (CVE-2024-20820)

m Inmediatek_plat_sip_handler_kernel, reachable from Linux Kernel
m [o exploitit, send the SMC 0x82000526 with

e (arbitrary_address - 0x4ce2f578) / 4
m Bug introduced by Samsung only in some devices (including A225F)
m [t leaks 4 bytes from ATF virtual address space

e We can read all the internal data of ATF

e But we can't leak anything from other SW components

60



SVE-2023-2215 (CVE-2024-20820)

IFWE.COULD MMAP ANY
==PHYSICAL ADDRESS IN ATF

y

y

 "THAT WOULD BE GREAT




Mapping Any Physical Address in ATF

SMC 0x8200022A calls function spm_actions

if (smc_id == 0x8200022a) {

spm_actions(arg1,arg2,arg3);

62



Mapping Any Physical Address in ATF

SMC 0x8200022A calls function spm_actions

undefined * spm_actions(ulong cmdid, undefined *addr,ulong size) {
switch(cmdid & Oxffffffff) {

[...]

case 1:
if (size < 0x100001) {

mmap_wrap(addr, size);

63



Mapping Any Physical Address in ATF

SMC 0x8200022A calls function spm_actions

undefined * spm_actionsdulong cmdid, undefined *addr,ulong size] {

switch(cmdid & OxFFFFFFFF) { \

L] Arguments fully
case 1: controlled

if (size < 0x100001) {

mmap_wrap(addr, size);

64



Mapping Any Physical Address in ATF

SMC 0x8200022A calls function spm_actions

undefined * spm_actionsdulong cmdid, undefined *addr,ulong size] {

switch(cmdid & OxFFFFFFFF) { \

[...]

case 1:
if (size < 0x1

mmap_wrap

Arguments fully
controlled

00001) {

addr!size);
And still no checks on

the address

65



Mapping Any Physical Address in ATF

SMC 0x8200022A calls function spm_actions

undefined * spm_actions(ulong cmdid,|undefined *aderulong size) A

switch(cmdid & OxfFfFffff) { \
[...]

Physical Address
case 1:

if (size < 0x100001) {

mmap_wrap(addr!size);
[...] And still no checks on

} the address

66



CVE-2024-20021

Also in mediatek_plat_sip_handler_kernel
Will mmap with physical base address to the same virtual address
e .. however we can't munmap
o So we are limited to 8 consecutives mmaps
o Meaning we can leak up to 8MB of data
Introduced by Mediatek (impacts plenty of Mediatek SoCs)
Chained to our leak, we can read everything in Secure World
e [ncluding TEEGRIS

67



Can we use this vulnerability to leak
Keystore keys?



Android Keystore system

Key storage and crypto services
Keys are stored as key blobs
Three protection levels:
e Software only
e TEE (default)
e Hardware-backed (StrongBox)
m Raw key should never leave protected environment

69



Android Keystore system

(Normal World ]

UpdateOperation (input)

Be ?inoferation (key blob)

UpdateOperation (input)

FinishOperation (input)

Keymaster TA or
Trusted Chip

Decrypt blob and
extract key material

—

output

70



Import a key into the Android Keystore
Encrypt using that key

Stop the execution after BeginOperation is called
o To makes sure the key stays in memory

Leak the identified region of memory
Try all possible keys from from leak to decrypt ciphertext

71



2 maxime@®qb-laptopt:~/demo-atf 7238 gb-laptop1:~/demo-atf 34x23

( mo-atf
a1 100%8

puyer pour obtenir les

Ap)
informations météorologiques

Google

72



m We presented 4 vulnerabilities leading to
e Authentication bypass in Odin
e Code execution with persistence in LK
e Leak of SW memory, including Keystore keys
m Impact low/middle end Samsung devices
e Vulnerabilities are simple, and yet super impactful
e No mitigations in LK nor ATF

m All the vulnerabilities are now fixed

73



Thank you!

@max_r_b
@DamianoMelotti

contact@quarkslab.com

Quarkslab

@pwissenlit




