
Tame the (q)emu: debug firmware on custom emulated
board

Damien «virtualabs» Cauquil
dcauquil@quarkslab.com

Quarkslab

Abstract. QEMU is one of the most used software to perform efficient exe-
cutable files and systems emulation, and inspired multiple tools like Avatar2[1],
Panda[12] or the Unicorn Engine[9] using CPU emulation for security research
and training. Emulating a computer or an embedded system with QEMU is quite
straightforward and documented, but emulating a board based on a microcon-
troller or a system-on-chip is a different story.
Therefore, modifying QEMU to emulate a specific target system is sometimes
the only option regarding performances and other benefits QEMU provides, but
is often seen by security researchers or trainers as very difficult or impossible to
do because of the complexity of QEMU.
In this paper, we first briefly explain the main core concepts of QEMU including
some of its internals and the QEMU Object Model. Then, we demonstrate that
adding a custom board in QEMU is not a tedious task and can be done with little
knowledge of its API, based on a specific board we use in trainings and hardware
CTFs. Finally, we quickly demonstrate how this custom emulated board can be
used for dynamic analysis and vulnerability research using QEMU debugging
capabilities.

1 Introduction

In cybersecurity, emulating a system is mostly used for two different pur-
poses: security assessment and offensive security training. Emulation offers a
lot of advantages:

— You have complete control over the hardware: if something goes wrong
you will not brick or destroy a real (possibly expensive) device.

— You can overcome some limitations imposed by the system, giving you
better control over the software that runs in the emulated environment.

— You can closely monitor what is happening on the target system.
These advantages obviously make the life of the security evaluator or of the

trainer easier, by allowing the use of well-known tools to be introduced in the
target system while the device does not allow its firmware to be modified for
instance, or by allowing kernel debugging where the target device does not offer
any debug port. Trainings based on emulated hardware devices allow students
to break anything and start over with a fresh new device, in a matter of seconds,

2 Tame the (q)emu: debug firmware on custom emulated board

without destroying real hardware. Moreover, it allows the trainer to rely on a
frozen version of the firmware without any fear of a firmware being updated
by the device vendor in a more recent version of a target device (true fact, it
happened to the author of this submission a few years ago).

Finally, it does also apply to bare-metal systems based on microcontrollers
or system-on-chips, as emulation opens up a lot of possibilities for security test-
ing and device debugging.

1.1 Why emulating devices with QEMU?

When it comes to CPU and system emulation, QEMU is the reference soft-
ware that comes into mind for many reasons: it can emulate both executable
files and operating systems on emulated CPUs and hardware, it supports a wide
variety of CPU and hardware, and is completely open-source. This is the go-to
solution for emulation that has inspired Google’s Android Emulator[3], Renesas
High-Speed Simulator for R-Car[11], or even Unicorn Engine[9] or Avatar2[1].

Indeed, it is the main tool used for firmware emulation and debugging by
security researchers, as it provides a convenient way to emulate embedded Linux
systems among others. As an example, we presented in 2021 an instrumentation
framework at the Pass The Salt conference[2] that relies on QEMU, inspired by
previous work by Saumil Shah on ARMX (now EMUX[10]).

This works pretty well to emulate a real computer and run any operating sys-
tem, but emulating a simple board based on a microcontroller that runs a simple
firmware with QEMU is more difficult as QEMU supports a limited number of
boards. For this specific use-case, we must often consider using a different tool
such as the Unicorn Engine and sacrifice performances to emulate a specific mi-
crocontroller with its main hardware peripherals and other board components.
But what does it cost to improve QEMU to support a custom board?

1.2 State of the Art

QEMU is a complex software but its internals has been really well docu-
mented on a dedicated blog[4] maintained by Airbus Security Lab and also in
the official documentation[7].

However, it mostly focuses on documenting the QEMU internals and pro-
vides only a set of code snippets that are useful for whoever wants to play with
QEMU, but not totally as no complete example source code is provided. More-
over, reading QEMU source code does not provide much information as most of
the different operations supported by any specific component are not explained.
It is difficult for a new-comer to understand what a piece of code does, and even
more difficult to understand why it has been implemented this way.

Damien «virtualabs» Cauquil 3

1.3 Contribution

This is why we propose in this paper to draw a big picture of how QEMU
software has been thought, its main principles and components, and a guide on
how to add a simple microcontroller-based custom board with the corresponding
fully documented source code.

The source code is available on Github 1 with test firmware files and a small
guide on how to build Qemu and use this new emulated board.

2 The QEMU Object Model

QEMU is developed in C but the developers created a specific code archi-
tecture that allows QEMU to provide some sort of pseudo-classes that can be
instanciated at run-time, these pseudo-classes being the basic building blocks of
an emulated system. For simplicity, we will call them classes for the rest of the
paper even if they are not real classes.

Each supported CPU is a class that derives from a generic CPU class, and
this is the same for all emulated hardware peripherals, system-on-chips, boards
and machines. These classes allow a great modularity, and each derived class
must implement a set of functions to provide the expected behavior. These
classes compose the QEMU Object Model (QOM).

2.1 QEMU devices lifecycle

In the QEMU Object Model, devices follow a specific lifecycle: they are
first created, then initialized, realized and optionnally unrealized.

The creation step is the most straightforward one as it consists in allocating
in memory a structure corresponding to the device class instance. Once allo-
cated, the device is initialized through a call to its initialize() callback function.
If the corresponding device class has not been already initialized at this point,
it is initialized first and then the device gets initialized. This is required as the
device callbacks may reference its parent class members.

Once initialized, the device’s properties can be set with the help of various
qdev_prop_set*() functions to assign values to some properties or link them to
other existing objects such as memory regions. Setting the object properties is
not enough as it will only set some members of its device state structure and
will have no real effect until the device’s realize() callback is called.

Device realization consists in setting up the real device based on its proper-
ties and its initial state, thus connecting everything and configuring the device

1 https://github.com/quarkslab/sstic-tame-the-qemu

https://github.com/quarkslab/sstic-tame-the-qemu

4 Tame the (q)emu: debug firmware on custom emulated board

1 struct ADS7846State {

2 SSIPeripheral ssidev;

3 qemu_irq interrupt;

4

5 int input[8];

6 int pressure;

7 int noise;

8

9 int cycle;

10 int output;

11 };

Listing 1. ADS7846 class definition

for its use in the emulated machine. This step may fail, this is why the realize()
callback has a dedicated Error pointer to report any error that might happen
during the device realization. Some devices may also need to provide an unre-
alize() callback if they can be unplugged from the machine after creation.

QEMU’s official documentation details the QEMU Object Model[8] and
provides some example code for new device class implementation including
some very specific usages that are not covered in this document.

2.2 Definition of object classes in QEMU

From a technical perspective, those classes are basically defined as C struc-
tures, as shown in listing 1. In this example the SSIPeripheral structure
defines the base class with its members (a serial synchronous interface pe-
ripheral), and listing 2 shows how this structure is defined in QEMU. And
of course this SSIPeripheral structure inherits from the base device class
DeviceClass, defined with its own structure as shown in listing 3.

This method based on nested structures allows generic APIs to manipulate
the various fields of a defined class that inherits from a base class, while keeping
the APIs manipulating the base class functional. This mechanism is at the core
of the QEMU Object Model.

Defining a new hardware peripheral or a new SPI flash memory chip is basi-
cally done the same way: we first need to define a dedicated structure associated
to the emulated component with its first member declaring the base class struc-
ture, and then add our own fields after. Each time QEMU is asked to create an
object of this specific type, it will allocate the corresponding structure, initial-

Damien «virtualabs» Cauquil 5

1 struct SSIPeripheral {

2 DeviceState parent_obj;

3

4 /* cache the class */

5 SSIPeripheralClass *spc;

6

7 /* Chip select state */

8 bool cs;

9

10 /* Chip select index */

11 uint8_t cs_index;

12 };

Listing 2. SSIPeripheral structure definition

1 typedef struct DeviceClass {

2 /*< private >*/

3 ObjectClass parent_class;

4

5 /*< public >*/

6

7 // [...]

8

9 bool user_creatable;

10 bool hotpluggable;

11

12 /* callbacks */

13 DeviceReset reset;

14 DeviceRealize realize;

15 DeviceUnrealize unrealize;

16

17 /* device state */

18 const VMStateDescription *vmsd;

19

20 /* Private to qdev / bus. */

21 const char *bus_type;

22 } DeviceClass;

Listing 3. QEMU DeviceClass structure definition

6 Tame the (q)emu: debug firmware on custom emulated board

1 /**
2 * struct ObjectClass:

3 *
4 * The base for all classes. The only thing that #ObjectClass

5 * contains is an integer type handle.

6 */

7 struct ObjectClass

8 {

9 /* private: */

10 Type type;

11 GSList *interfaces;

12

13 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];

14 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];

15

16 ObjectUnparent *unparent;

17

18 GHashTable *properties;

19 };

Listing 4. QEMU ObjectClass type definition

ize it by calling some specific functions and then let the associated code handle
everything.

Moreover, each class type is given a unique name that is used to reference
it by other building blocks, and QEMU provides all the required primitives to
instanciate an object based on its class name as well as access its properties from
outside its implementation, this is covered later in this paper (see 5.2).

Using nested structures and specific members for each of them allows
QEMU to define a type hierarchy, each type being by a structure placed at its
beginning that inherits from a base type (in this case, ObjectClass) com-
pleted with a set of other members defined by each derived type successively.
Fig 1 shows the type hierarchy of the ADS7846 peripheral structure. The result-
ing structure once unfolded is presented in Fig 2. Using these nested structures,
QEMU can easily retrieve the different members corresponding to the related
classes as they are stored at specific offsets in memory.

Every declared class inherits from ObjectClass (defined in
include/qom/object.h), a structure that stores critical information
regarding an object but also a set of properties that this object exposes stored in
its properties member (listing 4).

Damien «virtualabs» Cauquil 7

ADS7846State

Class members

SSIPeripheral

Class members

SSIPeripheral

DeviceClass

Class members

DeviceClass

ObjectClass

Class members

ObjectClass

Fig. 1. QEMU type hierarchy example

ADS7846State

ObjectClass Members

DeviceClass Members

SSIPeripheral Members

ADS7846 Members

Fig. 2. Resulting structure for ADS7846 peripheral state

8 Tame the (q)emu: debug firmware on custom emulated board

2.3 Communication between objects

Creating objects is one thing but allowing them to interact with other objects
is another. For instance, we may have a CPU defined with a Nested Vector Inter-
rupt Controller (NVIC) that manages every possible incoming interrupt request
or IRQ, but this NVIC needs to be connected to some other objects that need to
trigger an IRQ. This is why QEMU provide support for GPIOs and IRQs.

Basically, a GPIO is an output line that can hold a value (usually 0 or 1) and
can be connected to an IRQ of another object. By doing so, each time this GPIO
value is updated it may trigger a callback associated with the IRQ it is connected
to and let an object trigger a specific behaviour of another object. Fig 3 shows
how multiple peripherals of a machine can be connected to its NVIC to trigger a
call to the corresponding interrupt handlers through dedicated IRQs. Section 8
below in this document demonstrates a possible use of this mechanism to handle
events triggered by the user such as characters sent to a serial port by QEMU.

Properties

Object

IRQ GPIO

Peripheral

Peripheral

Peripheral

Peripheral

NVIC

GPIO

GPIO

GPIO

GPIO

IRQ #0

IRQ #1

IRQ #2

IRQ #3

Fig. 3. Example of peripherals connected to a NVIC

2.4 Assembling components like Lego bricks

To create a new custom board we will rely on QEMU basic building blocks:
device classes. Since any device exposes its own properties, can be added to

Damien «virtualabs» Cauquil 9

a machine and connected to other devices through GPIOs and IRQs, we can
elaborate a new emulated machine in which we may create different devices
and plug them together to mimic a real machine, therefore providing all the
required devices to get some firmware correctly emulated. Just like assembling
Lego bricks to build a machine.

QEMU provides a lot of different building bricks:
— Various CPUs, MCUs and SoCs, usually implemented in hw/_ARCH_/

depending on the target architecture
— External storage devices such as SPI or I2C Flash memory or NAND

memory devices that can be dynamically created and connected to a
SoC or a MCU

— Various UART controllers and devices to support one or more serial in-
terfaces

2.5 QEMU source code tree

The QEMU source code tree is quite huge, but there is some logic behind
it. This section details the most important sections, what they contain and what
role they play in QEMU software architecture.

/hw This folder is one of the most important regarding our purpose, as it is
where all hardware devices emulation code is stored. Subfolders include:

— /hw/arm containing every supported ARM-based system-on-chips and
boards.

— /hw/block containing block device drivers (usually devices that pro-
vides storage capabilities like Flash memory chips).

— /hw/char containing character device drivers, mostly serial devices
(UART).

— /hw/i2c containing various i2c devices implementation.
— /hw/intc containing different interrupt controllers.
— /hw/misc containing different controllers and devices that do not fit

the other categories.
— /hw/ssi containing various SPI hardware peripherals implementation.

/qom and /qobject These folders provide the main code for the QEMU Object
Model and QEMU Object. This code should not be modified as it is part of the
core code of QEMU. However, it can be interesting if you want to understand
how the QEMU Object Model and objects are managed by QEMU.

10 Tame the (q)emu: debug firmware on custom emulated board

/target This folder provides the various implementations of target CPUs. Again,
this is not a part of QEMU source code we need to modify, but it may be of
interest if you need some information regarding how a specific CPU is supported
or the different variants it can accept.

3 Methodology

Adding a custom board in QEMU can sometimes be difficult because even
if QEMU already supports a lot of different CPU, hardware peripherals and
devices, it may lacks the one you need to get your board correctly emulated. It is
then important to do a quick inventory of the components required to emulate a
target board and determine those that are not currently supported by QEMU and
would require some effort to be successfully emulated. A great knowledge of the
hardware that needs to be emulated is required in order to precisely determine
which components need to be added to QEMU and the amount of effort required
to do so.

We will focus on a tiny board we (Quarkslab) designed and use for hardware
reverse-engineering purpose and use it as an example throughout this article to
illustrate the different steps required to get such a custom board emulated with
QEMU.

3.1 Introducing Quarkslab’s Lil’Board

Quarkslab designed and produced a tiny board to be used in trainings and
its Hardware Capture the Flag events, the Lil’Board. This board is based upon
a tiny but powerful Microchip SAMD21 microcontroller, an external SPI flash
chip and a simple power circuit based on a low-dropout voltage regulator. The
board exposes a number of pin headers connected to the main components.

The SAMD21 microcontroller does not require an external oscillator but
only some decoupling capacitors, and is still able to communicate over USB
thanks to its USB clock recovery feature. This makes the board very simple to
analyze and emulate.

3.2 Hardware overview

From an hardware perspective, this board relies on an SAMD21 microcon-
troller and a W25Q16JV SPI Flash chip from Winbond. The firmware running
on the SAMD21 microcontroller can read and write the content of the Flash
chip, but also communicate with the user through a dedicated USART (Uni-
veral Syncrhonous/Asynchronous Receiver/Transmitter). Fig 5 summarizes the
main components that need to be emulated to run a basic firmware:

Damien «virtualabs» Cauquil 11

Fig. 4. Quarkslab Lil’board

— SAMD21: the microcontroller (MCU) this board is based on, that runs
a dedicated firmware and interacts with the external SPI Flash.

— W25Q16: the SPI Flash chip that contains a defined quantity of infor-
mation and can be accessed by the MCU.

— CPU: SAMD21’s core CPU, an ARM Cortex-M0+ CPU
— SRAM: static RAM used by the CPU to operate
— FLASH: SAMD21 internal Flash memory in which the firmware is

stored
— GPIO: SAMD21’s input/output hardware peripheral that controls the

MCU inputs and outputs (defined as PORT in the documentation but
renamed here for more readability)

— SERCOM: SAMD21’s serial communication hardware peripheral that
allows the MCU to communicate with other external electronics compo-
nents including SPI Flash chips and USART-compatible devices.

Note that Microchip’s SAMD21 MCU may also require other core hard-
ware peripherals that are required by the firmware’s bootstrap code in charge
of initializing the MCU but that are not listed here for simplicity. They will be
detailed later in this document.

3.3 Determining the missing bricks and their dependencies

In order to emulate a full electronic board, we need to make sure that every
single required component is supported. Based on our hardware specification,
QEMU already provides the following components:

— A Cortex-M0+ ARM CPU supporting the ARM v6m instruction set, as
required by the SAMD21 MCU

12 Tame the (q)emu: debug firmware on custom emulated board

Fig. 5. Overview of our custom board architecture

— A compatible SPI Flash in the form of the M25P80 SSI slave device
(not exactly our W25Q16JV chip but it provides others that are fully
compatible with the Flash read/write operations)

That means we will need to add the following components to QEMU:
— SAMD21’s core peripherals (system controller, power controller and

clock controller)
— SAMD21’s GPIO and SERCOM hardware peripherals
— SAMD21 MCU using an off-the-shelf ARM Cortex-M0+ CPU with its

associated NVIC and our newly implemented GPIO and SERCOM pe-
ripherals

— Our custom board that uses our newly implemented SAMD21 MCU and
an off-the-shelf SPI Flash chip

3.4 Planning the implementation

One may be tempted to add the required components from bottom to top,
starting with SAMD21 core peripherals and its others hardware peripherals and
finishing up with the custom board component, but its highly discouraged be-
cause of the way memory is managed under QEMU. In QEMU, each memory-
mapped object uses its own part of memory that belongs to its parent object and
therefore this parent object needs to be defined before in order to test the child
object implementation.

We will then start by creating a skeleton for our custom board, with abso-
lutely no CPU or memory at the beginning, and will populate this board with its
different components as we add them in QEMU. Doing so will let us define a
global memory space for our board and split it among the different components,
from top to bottom. It will also ease the development and testing process as we
will be able to use our board form the start and debug with QEMU (and GDB)
to investigate any error or bug we may encounter.

Damien «virtualabs» Cauquil 13

Based on the various components we previously identified, this is how we
plan to implement our custom board:

1. We add our custom board in QEMU by creating a simple skeleton and
modifying the build system to include it during compilation

2. We implement our SAMD21 MCU object type by creating a simple
Cortex-M0+ ARM CPU and by adding memory regions dedicated to
SRAM and FLASH

3. We add the capability to load a firmware to our custom board, writing
its content into the newly created FLASH memory region

4. We then implement the core controllers as new object types for our
SAMD21 MCU: a system controller, a clock controller and a power con-
troller that will have their own memory region assigned

5. Once the core controllers implemented, we define a new object type for
our SERCOM hardware peripheral that supports both USART and SPI
protocols, allowing this peripheral to be connected to QEMU’s standard
serial input/output and offering a dedicated synchronous serial interface
(SSI)

6. We define a new object type for our GPIO hardware peripheral

7. We update our MCU implementation in order to add all of the SERCOM
hardware interfaces and the GPIO peripheral

8. We update our custom board implementation to use our latest version of
MCU, create an external SPI Flash and connect it to our MCU

This plan has been designed for our board, depending on its hardware and
the missing pieces that need to be implemented. Boards that use standard com-
ponents such as an already supported SoC like the nRF51822 for instance or
other well-known devices that can be plugged to a QEMU SSI bus may be eas-
ily implemented and will not require as much development as ours.

14 Tame the (q)emu: debug firmware on custom emulated board

4 Step 1: creating a skeleton for our custom board

First thing first, we need to create a basic custom board that provides no
CPU and no memory in QEMU, just a board that is known by QEMU and will
be made available from QEMU’s board list. Since our custom board is based
on an ARM CPU, we will consider placing our files in /hw/arm/ (for source
files) and /include/hw/arm/ (for header files).

As previously explained, our new custom board will be defined as a spe-
cific QEMU object type with its own properties, child objects and associated
callbacks.

4.1 Board state structure

We create a dedicated file /hw/arm/qblilboard.c that will hold the
code in charge of our new board. No need of a custom header file, this board
will not be used by anything else but the final user through QEMU’s CLI. We
add the mandatory includes directives as well as a custom structure that will
hold our board state (listing 5)

This state structure has a single member declared as a MachineState
structure and named parent, which is mandatory as it is required by the parent
type of our board.

4.2 Board type definition

We then add some code to declare our new object type and its associated
name (listing 6), declaring a new TYPE_LILBOARD_MACHINE macro that
will hold our board name. We also add some code to populate a new TypeInfo
structure describing our new object type and some basic callbacks required to
initialize the board (listing 7).

Our new type declaration requires a first callback function to be imple-
mented, lilboard_machine_class_init() (listing 8). This function is called by
QEMU on type initialization, and will set the machine display name, the type
instance initialization callback and the maximum number of CPUs of the board.
The instance initialization callback, lilboard_init(), will be in charge of the
board initialization but is now defined as an empty function (listing 9). This
callback function will be called by QEMU when our custom board is instanci-
ated to setup everything before running the firmware.

4.3 Modifying the build system

QEMU uses Meson as its main build system, we need to modify one
of its configuration file to include our custom board in the build process:

Damien «virtualabs» Cauquil 15

1 #include "qemu/osdep.h"

2 #include "qapi/error.h"

3 #include "hw/qdev-properties.h"

4 #include "hw/boards.h"

5 #include "hw/arm/boot.h"

6 #include "sysemu/sysemu.h"

7 #include "exec/address-spaces.h"

8 #include "hw/qdev-properties.h"

9 #include "qom/object.h"

10

11 /**
12 * Like our SAMD21 SERCOM device class or our MCU device class,

13 * we need to define a specific device class for our board, as

well↪→

14 * as a device state structure:

15 */

16

17 struct LilboardMachineState {

18 /* Parent machine state. */

19 MachineState parent;

20 };

Listing 5. Qb Lilboard state structure

1 #define TYPE_LILBOARD_MACHINE MACHINE_TYPE_NAME("qb-lilboard")

2 OBJECT_DECLARE_SIMPLE_TYPE(LilboardMachineState,

LILBOARD_MACHINE)↪→

Listing 6. Custom board type creation

16 Tame the (q)emu: debug firmware on custom emulated board

1 /**
2 * The following structure describes our machine class type:

3 *
4 * - It sets the machine name ("qb-lilboard").

5 * - It sets the parent class type (a QEMU machine).

6 * - It sets the instance size (the size of our state structure).

7 * - It sets the class initialization callback.

8 *
9 */

10

11 static const TypeInfo lilboard_info = {

12 .name = TYPE_LILBOARD_MACHINE,

13 .parent = TYPE_MACHINE,

14 .instance_size = sizeof(LilboardMachineState),

15 .class_init = lilboard_machine_class_init,

16 };

17

18 /**
19 * The following function is in charge of declaring every types

related↪→

20 * to our class.

21 *
22 * In fact, it only registers our machine type.

23 */

24

25 static void lilboard_machine_init(void)

26 {

27 type_register_static(&lilboard_info);

28 }

29

30 /* Tells QEMU to register our module type registration callback.

*/↪→

31 type_init(lilboard_machine_init);

Listing 7. Custom board type definition

Damien «virtualabs» Cauquil 17

1 static void lilboard_machine_class_init(ObjectClass *oc, void

*data)↪→

2 {

3 MachineClass *mc = MACHINE_CLASS(oc);

4

5 mc->desc = "Qb Lil'board (SAMD21)";

6 mc->init = lilboard_init;

7 mc->max_cpus = 1;

8 }

Listing 8. Type initialization callback function

1 static void lilboard_init(MachineState *machine)

2 {

3 }

Listing 9. Type instance initialization callback function

/hw/arm/meson.build. We add a line telling Meson to include our C file
when the CONFIG_QBLILBOARD option is set (listing 10).

4.4 Building QEMU

Following QEMU build instructions, we build our modified version of
QEMU for ARM targets (listing 11). Once completed, running qemu-system-
arm with the –machine help option displays every supported machine types,
including our new custom board !

1 [...]

2 arm_ss.add(when: 'CONFIG_VEXPRESS', if_true:

files('vexpress.c'))↪→

3 arm_ss.add(when: 'CONFIG_ZYNQ', if_true: files('xilinx_zynq.c'))

4 arm_ss.add(when: 'CONFIG_SABRELITE', if_true:

files('sabrelite.c'))↪→

5 arm_ss.add(when: 'CONFIG_QBLILBOARD', if_true:

files('qblilboard.c'))↪→

Listing 10. Meson build script for ARM boards

18 Tame the (q)emu: debug firmware on custom emulated board

1 mkdir build && cd build

2 ../configure --target-list=arm-softmmu

3 make -j4

Listing 11. Building QEMU for arm targets

Damien «virtualabs» Cauquil 19

5 Step 2: adding a new SAMD21 MCU in QEMU

The SAMD21 microcontroller is based on a Cortex-M0+ ARM CPU that
is supported out-of-the-box by QEMU. Most of its hardware peripherals are
however not supported by QEMU and we need to add some dedicated code to
emulate them. These peripherals are documented in the SAMD21’s datasheet[6],
including the different memory-mapped registers and their expected behaviors.
Having the datasheet or the reference manual is key when implementing a spe-
cific microcontroller or system-on-chip in QEMU. Fig 6 shows the existing parts
(grey background) and those we need to implement (white background).

CPU

FLASHSRAM

PM

SYSCTRL GCLK

SAMD21

GPIO SERCOM

Fig. 6. SAMD21 MCU overview

5.1 Creating a skeleton for our SAMD21 MCU

First, we need to create a dedicated source file for this SAMD21 mi-
crocontroller in order to implement a new object type in /hw/arm/. Let’s
create a file named samd21.c with the minimum object type declara-
tion code needed (listing 12). We also define a dedicated header file in
/include/hw/arm/samd21_mcu.h (listing 13).

20 Tame the (q)emu: debug firmware on custom emulated board

We add some basic functions required for class and instance initialization,
samd21_class_init() and samd21_init() respectively and we now have a basic
SAMD21 MCU object type (listing 14).

5.2 Let’s add an ARM Cortex-M0+ CPU

Our code skeleton for this SAMD21 MCU can now be improved by creat-
ing an ARM Cortex-M0+ CPU during instance initialization. We modify its
state structure to include our future ARM CPU state structure that will be
initialized when our SAMD21 MCU is initialized (listing 13). Note we use
a ARMv7MState structure as it also supports ARM v6 instruction set. Note
that the /include/hw/arm/armv7m.h file is included from our SAMD21
header file.

This new CPU state structure must be initialized each time an instance of
our SAMD21 MCU is created, so we do this in the samd21_init() function (list-
ing 16). We use QEMU’s object_initialize_child() function to create a new child
object that will be attached to our MCU object of type TYPE_ARMV7M and
qdev_prop_set_string() (line 6) and qdev_prop_set_uint32() (line 8) to set the
correct CPU type and number of IRQ.

This is basically how we reuse an object defined in QEMU: we initialize a
child object by providing a pointer to the corresponding state structure and then
we set its properties before realizing the object itself. In our case, our child CPU
will be added to our system bus and will provide code emulation. The child
object realization is performed through a call to its realization callback that will
consider its properties and configure the object instance accordingly.

So we now have a CPU inside our MCU, but we have no firmware to execute
and no memory defined where this firmware can be stored. We need to fix this
to get some code emulated.

5.3 Defining SAMD21 MCU memory regions

In order for our CPU to work properly, we need to define at least one mem-
ory region that will contain some code and that is exposed to our CPU. This
is done by adding a new memory region container into our SAMD21 state
structure (listing 21) and initializing it in samd21_init() (listing 20). Once initial-
ized, this memory region can be given to the CPU during our MCU realization
in order for it to be able to access its virtual memory fron the emulated code
(listing 18) thanks to the object_poperty_set_link() (line 7).

We also need to define two extra memory regions: one for the SAMD21
static RAM (SRAM) and another one for the SAMD21 embedded Flash. This is

Damien «virtualabs» Cauquil 21

1 #include "qemu/osdep.h"

2 #include "qapi/error.h"

3 #include "hw/arm/boot.h"

4 #include "hw/sysbus.h"

5 #include "hw/qdev-clock.h"

6 #include "hw/misc/unimp.h"

7 #include "qemu/log.h"

8

9 /* Include our SAMD21 header files. */

10 #include "hw/arm/samd21_mcu.h"

11

12 /* ... */

13

14 static const TypeInfo samd21_info = {

15 .name = TYPE_SAMD21_MCU,

16 .parent = TYPE_SYS_BUS_DEVICE,

17 .instance_size = sizeof(SAMD21State),

18 .instance_init = samd21_init,

19 .class_init = samd21_class_init,

20 };

21

22 static void samd21_types(void)

23 {

24 type_register_static(&samd21_info);

25 }

26

27 type_init(samd21_types)

Listing 12. SAMD21 skeleton code

22 Tame the (q)emu: debug firmware on custom emulated board

1 #ifndef SAMD21_MCU_H

2 #define SAMD21_MCU_H

3

4 #include "hw/sysbus.h"

5 #include "hw/arm/armv7m.h"

6 #include "hw/clock.h"

7 #include "qom/object.h"

8

9 #define TYPE_SAMD21_MCU "samd21-mcu"

10 OBJECT_DECLARE_SIMPLE_TYPE(SAMD21State, SAMD21_MCU)

11

12 /* SAMD21 state structure. */

13 struct SAMD21State {

14 /*< private >*/

15 SysBusDevice parent_obj;

16

17 /*< public >*/

18 };

19

20 #endif /* SAMD21_MCU_H */

Listing 13. SAMD21 MCU header file

Damien «virtualabs» Cauquil 23

1 static void samd21_init(Object *obj)

2 {

3 }

4

5 static void samd21_realize(DeviceState *dev_mcu, Error **errp)

6 {

7 }

8

9 static Property samd21_properties[] = {

10 DEFINE_PROP_END_OF_LIST(),

11 };

12

13 static void samd21_class_init(ObjectClass *klass, void *data)

14 {

15 DeviceClass *dc = DEVICE_CLASS(klass);

16

17 dc->realize = samd21_realize;

18 device_class_set_props(dc, samd21_properties);

19 }

Listing 14. SAMD21 class and instance callbacks

1 struct SAMD21State {

2 /*< private >*/

3 SysBusDevice parent_obj;

4

5 /*< public >*/

6

7 /* We need an ARMv7M CPU object. */

8 ARMv7MState cpu;

9 };

Listing 15. ARM CPU state member added to SAMD21State

24 Tame the (q)emu: debug firmware on custom emulated board

1 static void samd21_init(Object *obj)

2 {

3 SAMD21State *s = SAMD21_MCU(obj);

4

5 object_initialize_child(OBJECT(s), "armv7m", &s->cpu,

6 TYPE_ARMV7M);

7 qdev_prop_set_string(DEVICE(&s->cpu), "cpu-type",

8 ARM_CPU_TYPE_NAME("cortex-m0"));

9 qdev_prop_set_uint32(DEVICE(&s->cpu), "num-irq", 32);

10 }

Listing 16. ARM CPU initialization

1 struct SAMD21State {

2 /*< private >*/

3 SysBusDevice parent_obj;

4

5 /*< public >*/

6

7 /* We need an ARMv7M CPU object. */

8 ARMv7MState cpu;

9

10 /* Our main MCU memory container. */

11 MemoryRegion container;

12 }

Listing 17. SAMD21 MCU memory container

1 /* Link container memory to system memory. */

2 object_property_set_link(OBJECT(&s->cpu), "memory",

OBJECT(&s->container),↪→

3 &error_abort);

Listing 18. Setting ou ARM CPU memory region

Damien «virtualabs» Cauquil 25

1 /* Initialize SRAM memory region. */

2 memory_region_init_ram(&s->sram, OBJECT(s), "samd21.sram",

s->sram_size,↪→

3 &err);

4 if (err) {

5 error_propagate(errp, err);

6 return;

7 }

8

9 /* Map the SRAM memory region in our memory container at the

correct↪→

10 base address (provided in the SAMD21 datasheet). */

11 memory_region_add_subregion(&s->container, SAMD21_SRAM_BASE,

&s->sram);↪→

Listing 19. SRAM memory region initialization and mapping

done by defining two MemoryRegion structures inside our MCU state struc-
ture, initializing them in samd21_init() and mapping them into our MCU mem-
ory space represented by our container memory region (listing 19). SRAM
and Flash memory regions are mapped using memory_region_add_subregion()
at their respective memory addresses as specified in the MCU datasheet.

The listing 19 uses a member from SAMD21State structure named
sram_size, that has been added to allow our SAMD21 object to have its
SRAM size configurable through its properties. We declared sram_size as
an unsigned 32-bit integer in SAMD21State and added a property named
sram-size to our object type properties, as shown in listing 22. We also
added a property named flash-size to allow flash size configuration, and
a property named memory linked to a memory region declared in our state
structure as board_memory. The latter memory region will be mapped into
our container and allow the code creating an instance of our MCU to specify its
memory region previously initialized with code and data.

5.4 Defining a clock for our CPU

Our ARM CPU needs a system clock to run properly, therefore we must cre-
ate a system clock object and assign it to the corresponding CPU property. Cre-
ating an input system clock is quite easy, a simple call to qdev_init_clock_in()
is enough to create such a clock. This function also needs a dedicated Clock
structure that will hold the clock status, we added one into our SAMD21State

26 Tame the (q)emu: debug firmware on custom emulated board

1 static void samd21_init(Object *obj)

2 {

3 SAMD21State *s = SAMD21_MCU(obj);

4

5 /* Initialize the MCU memory container. */

6 memory_region_init(&s->container, obj,

7 "samd21-container",

8 UINT64_MAX);

9

10 object_initialize_child(OBJECT(s), "armv7m", &s->cpu,

11 TYPE_ARMV7M);

12 qdev_prop_set_string(DEVICE(&s->cpu), "cpu-type",

13 ARM_CPU_TYPE_NAME("cortex-m0"));

14 qdev_prop_set_uint32(DEVICE(&s->cpu), "num-irq", 32);

15 }

Listing 20. Initializing memory region during init

1 struct SAMD21State {

2 /*< private >*/

3 SysBusDevice parent_obj;

4

5 /*< public >*/

6

7 /* We need an ARMv7M CPU object. */

8 ARMv7MState cpu;

9

10 /* Our main MCU memory container. */

11 MemoryRegion container;

12 }

Listing 21. SAMD21 MCU memory container

Damien «virtualabs» Cauquil 27

1 static Property samd21_properties[] = {

2 DEFINE_PROP_LINK("memory", SAMD21State, board_memory,

TYPE_MEMORY_REGION,↪→

3 MemoryRegion *),

4 DEFINE_PROP_UINT32("sram-size", SAMD21State, sram_size,

SAMD21_X18_SRAM_SIZE),↪→

5 DEFINE_PROP_UINT32("flash-size", SAMD21State,

flash_size,↪→

6 SAMD21_X18_FLASH_SIZE),

7 DEFINE_PROP_END_OF_LIST(),

8 };

Listing 22. SAMD21 final object properties

1 /*
2 * Initialize a clock for this device called "sysclk".

3 */

4 s->sysclk = qdev_init_clock_in(DEVICE(s), "sysclk", NULL, NULL,

0);↪→

Listing 23. CPU input clock initialization

structure and initialize this system clock in our samd21_init() function (list-
ing 23). We then connect this system clock to our ARM CPU with a call to
qdev_connect_clock_in() in samd21_realize().

The frequency of this clock is set with a call to clock_set_hz(), which is
48MHz based on the MCU datasheet.

Now that our CPU has its memory and clock defined, we can realize in our
MCU realization callback samd21_realize() (listing 24).

5.5 Using our MCU in our custom board type

The SAMD21 CPU now has its clock and memory region defined and is
realized when the MCU is realized. SRAM and Flash memory regions are also
defined as subregions of the MCU virtual memory container, this first version of
the SAMD21 MCU can now be used in our custom board implementation. Note
that we only have a CPU, SRAM and Flash memory and no hardware peripheral
so we cannot expect it to run smoothly a firmware designed for the SAMD21,
but we then can run some code and debug it. Well, once we have an instance of
this MCU defined in our board and are able to load some code in memory.

28 Tame the (q)emu: debug firmware on custom emulated board

1 /* CPU has been correctly configured, we call

2 its realize callback and exit if an error

3 occurs during this operation. */

4 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu), errp)) {

5 return;

6 }

Listing 24. CPU realization

1 struct LilboardMachineState {

2 /* Parent machine state. */

3 MachineState parent;

4

5 /* MCU state. */

6 SAMD21State samd21;

7 };

Listing 25. Adding a SAMD21 MCU state structure in our SAMD21State structure

Since our board needs to create a SAMD21 MCU object instance we need
to add the corresponding state structure in our SAMD21State structure (list-
ing 25). We also update our lilboard_init() function to create a SAMD21 MCU
and realize it (listing 26).

Now our MCU will be initialized when our custom board is initialized, some
of its properties will be set to get it running as expected and it will be ready to
emulate some code. It does not support any hardware peripheral yet, but this
will be added later.

5.6 Updating QEMU build system

We also need to update QEMU’s build configuration files to add our MCU
to the compilation targets. We update the /hw/arm/meson.build configu-
ration file to include our SAMD21 MCU source file (listing 27).

Damien «virtualabs» Cauquil 29

1 /*
2 * We retrieve the system memory region allocated to this

3 * machine. QEMU allocates by itself the machine' system

4 * memory (in fact a structure representing the system

5 * memory space, not pre-allocating a huge chunk of memory).

6 */

7 MemoryRegion *system_memory = get_system_memory();

8

9 /* Create a SAMD21 MCU. */

10 object_initialize_child(OBJECT(machine), "samd21", &s->samd21,

11 TYPE_SAMD21_MCU);

12

13 /**
14 * After that, we link our MCU "property" to the board system

15 * memory, in order for our MCU to be able to access our board

16 * memory map.

17 */

18 object_property_set_link(OBJECT(&s->samd21), "memory",

19 OBJECT(system_memory), &error_fatal);

20

21 /**
22 * When all the properties have been set, we can ask QEMU to

23 * realize our MCU: it will call the object `realize`
24 * callback in charge of setting the object state and child

25 * objects based on the properties we defined.

26 */

27 sysbus_realize(SYS_BUS_DEVICE(&s->samd21), &error_fatal);

Listing 26. MCU initialization in our custom board

30 Tame the (q)emu: debug firmware on custom emulated board

1 arm_ss.add(when: 'CONFIG_NRF51_SOC', if_true:

files('nrf51_soc.c'))↪→

2 arm_ss.add(when: 'CONFIG_XEN', if_true: files('xen_arm.c'))

3 arm_ss.add(when: 'CONFIG_SAMD21', if_true: files('samd21.c'))

Listing 27. QEMU Meson build configuration file for ARM targets

Damien «virtualabs» Cauquil 31

6 Step 3: loading a firmware into memory

Now that we have our MCU added to our board, we can load a firmware file
into the board memory. Firmware files are usually provided through QEMU CLI
--kernel option that defines the machine’s kernel_filename property of
the corresponding state structure given to lilboard_init(). That means we will be
able to initialize our custom board with a specific firmware like this:

1 $ qemu-system-arm --machine qb-lilboard --kernel my_firmware.hex

There is no check by default performed on this kernel file, but we will use a
specific function provided by the ARM CPU implementation to load a file into
memory, armv7m_load_kernel(). This function tries to load the provided file as
an ELF file and will fall back to other file formats like Intel HEX if an error
occurs. Therefore, multiple file formats are supported:

— ELF: compiled ELF file with or without symbols
— Intel HEX: another type of file produced by a compiler for chip program-

ming purpose
— Raw binary: usually what we get when we dump the memory of a MCU

with a programmer
Firmware loading is performed in lilboard_init() and is quite straightfor-

ward, we simply need to tell this function to load the provided file at memory
address 0x00000000 with maximum size corresponding to the MCU flash size
for the first CPU defined in our machine.

1 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,

2 0, s->samd21.flash_size);

32 Tame the (q)emu: debug firmware on custom emulated board

7 Step 4: implementing SAMD21 core peripherals

The SAMD21 MCU has multiple hardware peripherals including some of
them critical for its operation:

— SYSCTRL: the main system controller as defined in datasheet section
17

— GCLK: clock controller that controls the various clocks and dividers as
defined in datasheet section 15

— PM: power manager controller as defined in datasheet section 16
These controllers are specific peripherals that control how the microcon-

troller works and may have critical impact on its behavior. These peripherals
must be initialized before using any other peripheral and therefore are usually
set up first by a bootstrap code. This bootstrap code is usually automatically
included at compilation time and cannot be easily modified by an application
developer.

We are going to implement these controllers as part of our SAMD21 MCU
in hw/arm/samd21.c.

7.1 System controller (SYSCTRL)

We don’t need to implement the complete behavior of SYSCTRL as most of
the startup code included in most firmwares only read registers and don’t really
interact with the peripheral. If we configure the registers with the correct values
in memory and allow the application to read and write into them, everything
will work as expected.

First, we declare the system controller registers offsets in a header file, based
on the datasheet, in include/hw/arm/samd21_mcu.h (listing 28). We
then add an array to hold the values of the system controller peripheral in our
SAMD21State structure (listing 29) and initialize them in samd21_realize()
with the defaults values except for the ready bits that we want to force, as the
system is supposed to be fully initialized (listing 30).

Eventually, we tell QEMU to call some special callbacks on every read
or write operation performed on the SAMD21 system controller’s memory-
mapped registers by defining a MemoryRegionOps structure as shown in
listing 31. This structure references two callback functions: sysctrl_read()
that controls any read operation performed on the memory region and sysc-
trl_write() that handles any write operation performed on any MMIO regis-
ter. Since we don’t need to fully emulate the SYSCTRL peripheral, we simply
have to keep track of the registers value (listing 32). Eventually, we update our
samd21_realize() function to initialize our SYSCTRL peripheral memory and
its associated read/write handlers (listing 33).

Damien «virtualabs» Cauquil 33

1 /* Define SYSCTRL registers offsets. */

2 REG32(SYSCTRL_INTENCLR, 0x00)

3 REG32(SYSCTRL_INTENSET, 0x04)

4 REG32(SYSCTRL_INTFLAG, 0x08)

5 REG32(SYSCTRL_PCLKSR, 0x0C)

6 REG32(SYSCTRL_XOSC, 0x10)

7 // ... skipped code ...

8 REG32(SYSCTRL_DPLLRATIO, 0x48)

9 REG32(SYSCTRL_DPLLCTRLB, 0x4C)

10 REG32(SYSCTRL_DPLLSTATUS, 0x50)

Listing 28. SYSCTRL registers declaration

1 /* SYSCTRL registers. */

2 uint32_t sysctrl_regs[0x15];

Listing 29. SYSCTRL registers array definition

1 /* Initialize our system controller (SYSCTRL) MMIO. */

2 memset(&s->sysctrl_regs, 0, sizeof(s->sysctrl_regs));

3

4 // Reset registers to their initial value

5 s->sysctrl_regs[R_SYSCTRL_XOSC] = 0x0080;

6 s->sysctrl_regs[R_SYSCTRL_XOSC32K] = 0x0080;

7 s->sysctrl_regs[R_SYSCTRL_OSC32K] = 0x003F0080;

8 s->sysctrl_regs[R_SYSCTRL_OSC8M] = 0x00000382;

9 s->sysctrl_regs[R_SYSCTRL_DFLLCTRL] = 0x0080;

10 s->sysctrl_regs[R_SYSCTRL_VREG] = 0x0002;

11 s->sysctrl_regs[R_SYSCTRL_DPLLCTRLA] = 0x80;

12

13 /* Mark all clocks as enabled and ready by default

14 (initialization bypass) */

15

16 /* EN32K=1 and ENABLE=1 */

17 s->sysctrl_regs[R_SYSCTRL_XOSC32K] |= 0x06;

18

19 /* DFLLRDY=1, OSC32KRDY=1 and OSC8MRDY=1 */

20 s->sysctrl_regs[R_SYSCTRL_PCLKSR] |= 0x1C;

Listing 30. SYSCTRL registers initialization

34 Tame the (q)emu: debug firmware on custom emulated board

1 /* Memory operation handlers for SYSCTRL. */

2 static const MemoryRegionOps sysctrl_ops = {

3 /* read operation handler. */

4 .read = sysctrl_read,

5 /* write operation handler. */

6 .write = sysctrl_write,

7 .endianness = DEVICE_NATIVE_ENDIAN,

8 /* Min access size is 4 bytes */

9 .impl.min_access_size = 4,

10 /* Max access size is 4 bytes */

11 .impl.max_access_size = 4

12 };

Listing 31. SYSCTRL MemoryRegionOps definition

1 static uint64_t sysctrl_read(void *opaque, hwaddr addr, unsigned

int size)↪→

2 {

3 SAMD21State *s = SAMD21_MCU(opaque);

4

5 /* Return register value. */

6 return s->sysctrl_regs[addr/4];

7 }

8

9 static void sysctrl_write(void *opaque, hwaddr addr, uint64_t

data,↪→

10 unsigned int size)

11 {

12 SAMD21State *s = SAMD21_MCU(opaque);

13 s->sysctrl_regs[addr/4] = (data & 0xffffffff);

14 }

Listing 32. SYSCTRL register read/write callback functions

Damien «virtualabs» Cauquil 35

1 static void samd21_realize(DeviceState *dev_mcu, Error **errp)

2 {

3 SAMD21State *s = SAMD21_MCU(dev_mcu);

4 Error *err = NULL;

5

6 // ... skipped code ...

7

8 /*
9 Tell QEMU to call our handlers if any read/write is

10 requested on our SYSCTRL peripheral registers.

11 */

12

13 memory_region_init_io(&s->sys, OBJECT(dev_mcu),

14 &sysctrl_ops, (void *)s, "samd21.sysctrl",

15 SAMD21_SYSCTRL_PERIPH_SIZE);

16

17 /*
18 Add our SYSCTRL memory region into our container.

19 */

20 memory_region_add_subregion_overlap(&s->container,

21 SAMD21_SYSCTRL_BASE, &s->sys, -1);

22 }

Listing 33. SYSCTRL peripheral initialization

36 Tame the (q)emu: debug firmware on custom emulated board

1 static uint64_t clock_read(void *opaque, hwaddr addr, unsigned

int size)↪→

2 {

3 SAMD21State *s = SAMD21_MCU(opaque);

4

5 /* Return register value. */

6 return s->gclk_regs[addr/4];

7 }

8

9 static void clock_write(void *opaque, hwaddr addr, uint64_t

data,↪→

10 unsigned int size)

11 {

12 SAMD21State *s = SAMD21_MCU(opaque);

13 s->gclk_regs[addr/4] = (data & 0xffffffff);

14 }

15

16 static const MemoryRegionOps clock_ops = {

17 .read = clock_read,

18 .write = clock_write,

19 .endianness = DEVICE_NATIVE_ENDIAN,

20 .impl.min_access_size = 4,

21 .impl.max_access_size = 4

22 };

Listing 34. GCLK memory read/write handlers

7.2 Generic clock controller (GCLK)

Adding the SAMD21 generic clock controller is very similar to what we did
with the system controller, as most of the application bootstrap code only per-
forms only read operations. The implementation follows the same scheme: we
first define the registers offsets, create a structure in our microcontroller state
structure to store the registers in memory and tell QEMU to map every read-
/write operation to this structure.

We define a new MemoryRegionOps structure for this peripheral (list-
ing 34), and define the corresponding memory region in our samd21_init() func-
tion (listing 35).

Damien «virtualabs» Cauquil 37

1 /*
2 * Initialize our generic clock controller (GCLK) MMIO.

3 *
4 * We first initialize our MMIO registers to zero and then

5 * create a dedicated MMIO region with specific read/write

6 * handlers. Then this region is mapped into our memory

7 * container at the expected address (again as defined in the

8 * datasheet).

9 */

10

11 memset(s->gclk_regs, 0, sizeof(s->gclk_regs));

12 memory_region_init_io(&s->clock, OBJECT(dev_mcu), &clock_ops,

(void *)s,↪→

13 "samd21.clock", SAMD21_GCLK_PERIPH_SIZE);

14

15 /* Map our GCLK MMIO registers into our memory container. */

16 memory_region_add_subregion_overlap(&s->container,

17 SAMD21_GCLK_BASE, &s->clock, -1);

Listing 35. GCLK MMIO registers mapping

1 create_unimplemented_device("samd21_mcu.io", SAMD21_IOMEM_BASE,

2 SAMD21_IOMEM_SIZE);

Listing 36. SAMD21 unimplemented devices support

7.3 Power manager

SAMD21’s power manager initialization is handled very easily by the of-
ficial application bootstrap code, as shown in the disassembled code extracted
from a test firmware we built with Microchip’s MPLabX integrated development
environment (fig. 7).

Defining a memory region at the expected base address initialized with ze-
roes is strictly enough to get the application code started. We do not need any
read/write memory handlers to handle this peripheral, so we use it as an excuse
to add a wide memory region to handle any unimplemented peripherals (list-
ing 36). We use QEMU create_unimplemented_device() function to create a de-
fault memory region starting at address SAMD21_IOMEM_BASE (0x40000000)
with a size of SAMD21_IOMEM_SIZE (0x02010000).

38 Tame the (q)emu: debug firmware on custom emulated board

Fig. 7. Microchip MPLabX bootstrap code for SAMD21 Power Manager controller

The previously implemented GCLK core peripheral could also have been
supported by this default memory region, but we may need to react to some
read or write operations in the future if we want or need to support multiple
clock sources (but for now our simple solution is enough to do the job).

We now have implemented our core peripherals. Fig ?? shows our progres-
sion in our journey to support this SAMD21 MCU.

Damien «virtualabs» Cauquil 39

CPU

FLASHSRAM

PM

SYSCTRL GCLK

SAMD21

GPIO SERCOM

Fig. 8. SAMD21 MCU overview, core peripherals done

40 Tame the (q)emu: debug firmware on custom emulated board

8 Step 5: implementing SERCOM peripherals

SAMD21’s SERCOM (stands for SERial COMmunication) peripheral pro-
vides an interface for different serial protocols including the Universal Syn-
chronous/Asynchronous Receiver Transmitter protocol (USART) and the Serial
Peripheral Interface (SPI) protocol. The same hardware peripheral can be con-
figured to interact with external components, be it some SPI Flash memory chip
or a computer. Microchip’s SAMD21 has 6 SERCOM hardware peripherals
(SERCOM0 to SERCOM5) defined in its specification but not all chip variants
provide the corresponding physical inputs and outputs.

Fig. 9. From SERCOM0 IRQ to handler execution

SAMD21’s SERCOM peripheral has one interrupt line (IRQ) connected to
the main CPU Nested Vector Interrupt Controller (NVIC) that is triggered when
specific events occur and conditions are met. This allows the associated vector
handler to be called in order to handle a specific event that happened, such as
some data received or any error that may happen (as shown in figure 9). In
QEMU, this IRQ is part of the hardware peripheral model and can be connected
to the corresponding NVIC interrupt line depending on the peripheral number.
The figure 10 taken from the datasheet shows the interrupted lines associated
with each SERCOM peripheral.

As other hardware peripherals, the SAMD21 SERCOM hardware peripheral
has its own set of memory-mapped registers we need to emulate. Again, we
follow as strictly as possible the datasheet to implement the correct behavior,
but we also need this time to interact with QEMU as we want the SERCOM0

Damien «virtualabs» Cauquil 41

Fig. 10. SERCOM peripherals NVIC interrupt lines as specified in the datasheet

USART interface to be available to the user in a terminal. Instead of outputting
bytes to some GPIOs, we will forward the bytes sent over one USART interface
(in our case, SERCOM0) to an emulated serial interface handled by QEMU. If
this serial interface is set to be the standard output by the user, then the produced
text output will be displayed in the terminal. In a similar manner, we want any
input provided by the user in the terminal (using the standard input) to be fed
into our SERCOM0 hardware peripheral in order for the firmware to catch this
data and process it as if it was sent over a real USART interface.

SERCOM implementation is located in hw/misc/samd21_sercom.c
as this peripheral supports both USART and SPI protocols. Usually, any US-
ART (or UART) peripheral implementation is placed in hw/char/ while SPI-
related peripherals are located in hw/ssi/. It implements a new object type
TYPE_SAMD21_SERCOM as described in previous sections of this document.
We will not explain in this section how this new type is declared and initialized,
the reader is invited to read the corresponding source code with a focus on the
samd21_sercom_class_init() and samd21_sercom_init() functions.

8.1 Adding support for USART protocol

When a byte is sent through the SERCOM peripheral, we simply tell QEMU
that the associated character device has received one byte of data (listing 37).
When data is received on the configured serial interface, we interact with the pe-
ripheral registers and notify the hardware that an event occured (if correspond-
ing interrupts have been enabled by software) by setting the peripheral interrupt
flags (listing 38). The corresponding interrupt request (IRQ) is triggered by our
code if at least one event has been enabled by software (listing 39), by calling
qemu_set_irq().

When qemu_set_irq() is called with a level of 1, the corresponding
NVIC interrupt line is triggered and this causes the associated vector handler to

42 Tame the (q)emu: debug firmware on custom emulated board

1 static gboolean uart_transmit(void *do_not_use, GIOCondition

cond,↪→

2 void *opaque)

3 {

4 SAMD21SERCOMState *s = SAMD21_SERCOM(opaque);

5 int r;

6

7 /* Extract the byte written into the DATA register. */

8 uint8_t c = s->reg16[R_SERCOM_DATA];

9

10 /* Reset DRE bit of INTFLAG (no new byte can be sent). */

11 s->reg8[R_SERCOM_INTFLAG] &= (~(1 <<

R_SERCOM_INTFLAG_DRE_SHIFT) |↪→

12 (1 << R_SERCOM_INTFLAG_TXC_SHIFT));

13

14 s->watch_tag = 0;

15

16 /* Send this byte to QEMU associated character device */

17 r = qemu_chr_fe_write(&s->chr, &c, 1);

18 if (r <= 0) {

19 /* If an error occured, try to retransmit later or

20 drop the byte. */

21 s->watch_tag = qemu_chr_fe_add_watch(&s->chr,

22 G_IO_OUT | G_IO_HUP, uart_transmit, s);

23 if (!s->watch_tag) {

24 /* The hardware has no transmit error reporting,

25 * so silently drop the byte

26 */

27 goto buffer_drained;

28 }

29 return G_SOURCE_REMOVE;

30 }

31

32 buffer_drained:

33 /* Set interrupt flags to notify this byte has been sent (DRE)

34 and transmission is complete (TXC). */

35 s->reg8[R_SERCOM_INTFLAG] |= (1 <<

R_SERCOM_INTFLAG_DRE_SHIFT);↪→

36 s->reg8[R_SERCOM_INTFLAG] |= (1 <<

R_SERCOM_INTFLAG_TXC_SHIFT);↪→

37 s->reg16[R_SERCOM_DATA] = 0;

38 s->pending_tx_byte = false;

39

40 return G_SOURCE_REMOVE;

41 }

Listing 37. SERCOM USART sending function

Damien «virtualabs» Cauquil 43

1 static void uart_receive(void *opaque, const uint8_t *buf, int

size)↪→

2 {

3 SAMD21SERCOMState *s = SAMD21_SERCOM(opaque);

4 int i;

5

6 /* Sanity checks (exit if no byte received or RX FIFO is

full). */↪→

7 if (size == 0 || s->rx_fifo_len >= UART_FIFO_LENGTH) {

8 return;

9 }

10

11 /* Load received bytes into RX FIFO. */

12 for (i = 0; i < size; i++) {

13 uint32_t pos = (s->rx_fifo_pos + s->rx_fifo_len) %

UART_FIFO_LENGTH;↪→

14 s->rx_fifo[pos] = buf[i];

15 s->rx_fifo_len++;

16 }

17

18 /* Set RXC bit (receive complete) in INTFLAG register. */

19 s->reg8[R_SERCOM_INTFLAG] |= (1 <<

R_SERCOM_INTFLAG_RXC_SHIFT);↪→

20

21 /* Trigger IRQ if required. */

22 samd21_update_irq(s);

23 }

Listing 38. SERCOM UART incoming data processing

44 Tame the (q)emu: debug firmware on custom emulated board

1 static void samd21_update_irq(SAMD21SERCOMState *s)

2 {

3 uint8_t intflag = s->reg8[R_SERCOM_INTFLAG];

4 uint8_t intenset = s->interrupts;

5 bool irq = false;

6

7 /* DRE */

8 irq |= (intflag &&

9 (intflag & R_SERCOM_INTFLAG_DRE_MASK) &&

10 (intenset & R_SERCOM_INTFLAG_DRE_MASK));

11

12 /* TXC */

13 irq |= (intflag &&

14 (intflag & R_SERCOM_INTFLAG_TXC_MASK) &&

15 (intenset & R_SERCOM_INTFLAG_TXC_MASK));

16

17 /* RXC */

18 irq |= (intflag &&

19 (intflag & R_SERCOM_INTFLAG_RXC_MASK) &&

20 (intenset & R_SERCOM_INTFLAG_RXC_MASK));

21

22 /* other conditions here ... */

23

24 /* Set SERCOM IRQ line level to 1 or 0. */

25 qemu_set_irq(s->irq, irq);

26 }

Listing 39. SAMD21 SERCOM IRQ update

Damien «virtualabs» Cauquil 45

1 static Property samd21_sercom_properties[] = {

2 DEFINE_PROP_CHR("chardev", SAMD21SERCOMState, chr),

3 DEFINE_PROP_END_OF_LIST(),

4 };

Listing 40. SAMD21 SERCOM peripheral properties

1 static void samd21_sercom_realize(DeviceState *dev, Error

**errp)↪→

2 {

3 SAMD21SERCOMState *s = SAMD21_SERCOM(dev);

4

5 /* Set QEMU character device backend callbacks to handle

UART events. */↪→

6 qemu_chr_fe_set_handlers(&s->chr, uart_can_receive,

uart_receive,↪→

7 uart_event, NULL, s, NULL, true);

8 }

Listing 41. SAMD21 SERCOM chardev configuration

be executed next. This emulates the way interrupts are triggered on the real hard-
ware and allows the handler code to query this peripheral, retrieve the received
byte and process it immediately, interrupting whatever the code was doing. Then
the execution resumes to the place it has been interrupted, and the CPU goes on
with the next instructions.

We also use a specific object property named chardev mapped to our
SAMD21SercomState structure member chr to allow external code to as-
sign a character device to use for input/output (listing 40). This same chr struc-
ture member is used in our code to read incoming data typed in by the user
and write data sent by the firmware back into the user’s terminal. This character
device is configured in samd21_sercom_realize() (listing 41).

8.2 Adding support for SPI master

The SAMD21 SERCOM peripheral can also acts as an SPI master or slave,
depending on its configuration. Luckily for us, QEMU provides a way to cre-
ate a system bus dedicated to synchronous serial interfaces, or SSI. Creating a
dedicated SSI bus is required as we may want to connect multiple devices on it,
each device being selected through a dedicated Chip Select line (usually called

46 Tame the (q)emu: debug firmware on custom emulated board

1 struct SAMD21SERCOMState {

2 SysBusDevice parent_obj;

3

4 MemoryRegion iomem;

5 CharBackend chr;

6 SSIBus *ssi;

7

8 /* ... */

Listing 42. SERCOM state structure with SSI reference

1 /* Initialize a new SSI bus. */

2 s->ssi = ssi_create_bus(dev, "ssi");

Listing 43. SERCOM SSI bus creation

CS). We will cover how CS lines are handled later in this document. First, we
need to update our SERCOM state structure to include a reference to an SSI
bus that is going to be dynamically allocated (listing 42). Then, we add in our
sercom_init() function a few lines to create our bus (SSIBus) and save it inside
our state structure (listing 43).

Once this bus created, we can handle data transmission when a write op-
eration is performed on the DATA MMIO register. First, we create a dedicated
function (listing 44) in charge of transferring the content of the DATA register
to our SSI bus, and we call this function every time a byte is written into the
DATA regiser (listing 45). Since SPI is full-duplex, we send and receive data at
the same time, so we end up updating the DATA register each time a byte has
been sent.

Our SERCOM peripheral has now its own SSI bus and is able to send data
to and receive data from it. We will later connect an emulated SPI Flash chip to
one of our SERCOM peripheral in order to communicate with it.

Last but not least, we add some initialization code in the SAMD21 instance
initialization callback samd21_realize() in order to create our 6 SERCOM inter-
faces, and assign the first one to our default serial interface (listing 46).

8.3 Creating our default 6 SERCOM interfaces

Once our SERCOM object type implemented, we can add the 6 de-
fault SERCOM interfaces to our SAMD21 MCU. We first add an array of

Damien «virtualabs» Cauquil 47

1 static void sercom_spi_transfer(SAMD21SERCOMState *s)

2 {

3 /* Send and receive byte. */

4 s->reg16[R_SERCOM_DATA] = ssi_transfer(s->ssi,

s->reg16[R_SERCOM_DATA] & 0xFF);↪→

5

6 /* Set DRE, RXC and TXC flag in the INTFLAG register, to tell

the software that↪→

7 more bytes can be sent after this function call. */

8 s->reg8[R_SPI_INTFLAG] |= (1 << R_SPI_INTFLAG_DRE_SHIFT);

9 s->reg8[R_SPI_INTFLAG] |= (1 << R_SPI_INTFLAG_TXC_SHIFT);

10 s->reg8[R_SPI_INTFLAG] |= (1 << R_SPI_INTFLAG_RXC_SHIFT);

11 }

Listing 44. SERCOM SPI byte transfer

1 case A_SERCOM_DATA:

2 {

3 switch (s->current_mode)

4 {

5 /* ... */

6

7 case SERCOM_SPI:

8 {

9 /* Write register. */

10 s->reg16[R_SERCOM_DATA] = (value & 0xffff);

11

12 /* Transfer through SSI. */

13 sercom_spi_transfer(s);

14 }

15 break;

16

17 default:

18 break;

19 }

20 }

21 break;

Listing 45. Handling SPI byte send

48 Tame the (q)emu: debug firmware on custom emulated board

1 for (i=0; i<6; i++)

2 {

3 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sercom[i]), errp)) {

4 return;

5 }

6

7 /* We retrieve our SERCOM peripheral MMIO region

8 into `mr`. */

9 mr = sysbus_mmio_get_region(

10 SYS_BUS_DEVICE(&s->sercom[i]),

11 0);

12

13 /* And we map it to the correct base address inside

14 our container. */

15 memory_region_add_subregion_overlap(&s->container,

16 SAMD21_SERCOM0_BASE + 0x400*i, mr, 0);

17

18 /*
19 * Last but not least, we need to connect our SERCOM IRQ

20 * line to the corresponding NVIC input IRQ line, using

21 * the `sysbus_connect_irq` function. We need to know the

22 * IRQ line number used in the SERCOM peripheral

23 * implementation (again, identified by a sequential

24 * number that is incremented in the exact order these

25 * IRQ lines have been created) and connect it to the

26 * correct GPIO exposed by the CPU NVIC.

27 * Here we are connecting SERCOM's IRQ line #n to NVIC

28 * input GPIO #9+n, as described in the SAMD21

29 * documentation (section 11.2.2).

30 */

31 sysbus_connect_irq(SYS_BUS_DEVICE(&s->sercom[i]), 0,

32 qdev_get_gpio_in(DEVICE(&s->cpu), 9 + i));

33 }

Listing 46. SAMD21 SERCOM interfaces initialization

Damien «virtualabs» Cauquil 49

1 for (i=0; i<6; i++)

2 {

3 /* Create an instance of SERCOM peripheral. */

4 object_initialize_child(obj, "sercom[*]", &s->sercom[i],

5 TYPE_SAMD21_SERCOM);

6

7 /* Special case for SERCOM0: we want to add an alias

8 'serial0' for it. */

9 if (i == 0)

10 {

11 object_property_add_alias(obj, "serial0",

12 OBJECT(&s->sercom[i]), "chardev");

13 }

14 }

Listing 47. SAMD21 SERCOM interfaces creation

SAMD21SercomState structures in our SAMD21State structure, initial-
ize 6 interfaces in samd21_init() (listing 47) and then configure all of them
in samd21_realize() (listing 48). For each interface, we map the correspond-
ing memory region into our container at the expected address using mem-
ory_region_add_subregion_overlap() and then connect each SERCOM IRQ line
to the CPU NVIC input GPIO following the datasheet. Interrupt numbers 9 to
15 are connected to our 6 different SERCOM interfaces. We create a new prop-
erty serial0 for our SAMD21 MCU that is an alias of SERCOM0 chardev
property.

SAMD21 SERCOM peripherals are now supported, Fig ?? shows our
progress in our journey to add support for SAMD21 into QEMU.

50 Tame the (q)emu: debug firmware on custom emulated board

1 for (i=0; i<6; i++)

2 {

3 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sercom[i]), errp)) {

4 return;

5 }

6

7 /* We retrieve our SERCOM peripheral MMIO region into `mr`. */

8 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->sercom[i]), 0);

9

10 /* And we map it to the correct base address inside our

11 container. */

12 memory_region_add_subregion_overlap(&s->container,

13 SAMD21_SERCOM0_BASE + 0x400*i, mr, 0);

14

15 /* We connect the SERCOM IRQ #0 to our corresponding

16 NVIC GPIO. */

17 sysbus_connect_irq(SYS_BUS_DEVICE(&s->sercom[i]), 0,

18 qdev_get_gpio_in(DEVICE(&s->cpu),

19 9 + i));

20 }

Listing 48. SAMD21 SERCOM interfaces configuration

CPU

FLASHSRAM

PM

SYSCTRL GCLK

SAMD21

GPIO SERCOM

Fig. 11. SAMD21 MCU overview, core peripherals and SERCOM done

Damien «virtualabs» Cauquil 51

9 Step 6: implementing SAMD21 GPIO peripheral

The SAMD21 MCU provides a dedicated peripheral to interact with the
MCU physical input /ouput lines or GPIOs (for General Purpose Input/Output).
Emulating GPIOs in QEMU may seem pointless but since these GPIOs may be
connected to other emulated devices, it makes sense to get it supported in our
MCU implementation. Especially because our custom board also hosts an SPI
Flash chip that is connected to a SAMD21 MCU through an SPI interface and a
dedicated GPIO line (used for SPI chip selection).

Implementation is really no different from what we have done so far and
follows the same logic:

1. We create a dedicated source file (and header file) in which we define a
new object type

2. We populate our new object type state structure and properties with the
required members

3. We handle read/write operations performed on the peripheral MMIO reg-
isters

9.1 Creating a new object type and associated source file

We create a new file named samd21_gpio.c in hw/gpio/ and its asso-
ciated header file in include/hw/gpio/samd21_gpio.h, and implement
the basic code to create a new type named TYPE_SAMD21_GPIO.

One of the main interesting characteristic of the state structure associated
to this peripheral is the use of qemu_irq, which is a type dedicated to IRQs
but that will be used in our case as outputs that can be connected to any other
object input GPIO. This mechanism will allow to propagate a GPIO state to
other components of the board and make them react to these changes.

The state structure (listing 49) contains multiple members to handle the pe-
ripheral operations and associated registers. As for our previous hardware pe-
ripherals, we define a memory region (referenced by mmio in our structure)
to handle any read and write operation on the peripheral MMIO registers and
update the object state accordingly.

9.2 Handling read and write operations on MMIO registers

We set up a dedicated memory region with its read/write operation han-
dlers referenced in a MemoryOps structure (listing 50) and implemented two
handlers: samd21_port_read() for read operations and samd21_port_write() for
write operations.

52 Tame the (q)emu: debug firmware on custom emulated board

1 struct SAMD21GPIOState {

2 SysBusDevice parent_obj;

3

4 MemoryRegion mmio;

5 qemu_irq irq;

6

7

8 uint32_t out;

9 uint32_t old_out;

10 uint32_t old_out_connected;

11

12 uint32_t in;

13 uint32_t in_mask;

14 uint32_t dir;

15 uint32_t control;

16 uint32_t cnf[SAMD21_PORT_PINS];

17

18 qemu_irq output[SAMD21_PORT_PINS];

19 qemu_irq detect;

20 };

Listing 49. SAMD21 GPIO peripheral state structure

1 static const MemoryRegionOps gpio_ops = {

2 .read = samd21_port_read,

3 .write = samd21_port_write,

4 .endianness = DEVICE_LITTLE_ENDIAN,

5 .impl.min_access_size = 4,

6 .impl.max_access_size = 4,

7 };

Listing 50. SAMD21 GPIO peripheral MMIO operations

Damien «virtualabs» Cauquil 53

1 static void update_output_irq(SAMD21GPIOState *s, size_t i,

2 bool connected, bool level)

3 {

4 /* If pin is not connected, reflect its floating state by

5 setting the IRQ level to -1. */

6 int64_t irq_level = connected ? level : -1;

7 bool old_connected = extract32(s->old_out_connected, i, 1);

8 bool old_level = extract32(s->old_out, i, 1);

9

10 /* If output has been disconnected/connected or level

11 changed, notify. */

12 if ((old_connected != connected) || (old_level != level)) {

13 qemu_set_irq(s->output[i], irq_level);

14 }

15

16 /* Save current pin state. */

17 s->old_out = deposit32(s->old_out, i, 1, level);

18 s->old_out_connected = deposit32(s->old_out_connected, i,

19 1, connected);

20 }

Listing 51. SAMD21 GPIO update

This GPIO peripheral provides an optional pull-up resistor that can be pro-
grammatically set, we need to take this into account when the register (IN)
holding our input values is read. Writing to registers OUTSET, OUTCLR or
OUTTGL cause the OUT register to be modified accordingly. Setting a bit
in OUTSET causes the same bit to be forced in the OUT register while set-
ting a bit in OUTCLR clears the corresponding bit in OUT. Setting a bit in
OUTTGL toggles the corresponding bit in OUT. This behavior is implemented
in samd21_port_write().

Whenever the OUT register value changes we need to update our object
GPIOs, which is implemented in update_output_irq() (listing 51). We track
each output individually and update the corresponding IRQ when a change is
observed.

9.3 Adding our GPIO peripheral to SAMD21

Once this GPIO peripheral implemented, we can use it in our SAMD21
MCU implementation. As usual, we start by adding a new member port of

54 Tame the (q)emu: debug firmware on custom emulated board

type SAMD21GPIOState into our SAMD21State structure and initializing
it in samd21_init:

1 /*
2 * Initialize our PORT (GPIO) controller.

3 */

4 object_initialize_child(obj, "port", &s->port,

5 TYPE_SAMD21_PORT);

And we realize it in samd21_realize() and map its MMIO memory region at
the correct address (listing 52).

1 /*
2 * Initialize PORT controller.

3 */

4 if (!sysbus_realize(SYS_BUS_DEVICE(&s->port), errp)) {

5 return;

6 }

7

8 /* We retrieve our PORT controller MMIO region into `mr`. */

9 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->port), 0);

10

11 /* And we map it to the correct base address inside our

container. */↪→

12 memory_region_add_subregion_overlap(&s->container,

SAMD21_PORT_BASE, mr, 0);↪→

Listing 52. SAMD21 GPIO initialization

SAMD21 now supports all our required peripherals as shown in Fig 12, we
have everything we need to start emulating a compatible firmware. Note that
some other hardware peripherals are still missing, but since they are not criti-
cal for our target firmware they have been left unimplemented. These peripher-
als can be added by following the same methodology, based on the SAMD21
datasheet.

Damien «virtualabs» Cauquil 55

CPU

FLASHSRAM

PM

SYSCTRL GCLK

SAMD21

GPIO SERCOM

Fig. 12. SAMD21 MCU overview, all our target peripherals are now supported

56 Tame the (q)emu: debug firmware on custom emulated board

10 Step 7: putting everything together

Once the main MCU and its required hardware peripherals have been imple-
mented, defining a board using this MCU and other peripherals is pretty straight-
forward. It looks like a Lego game as we need to create objects of different
classes and interconnect them altogether.

10.1 Connecting the QEMU console to our SERCOM0 interface

First, we need to assign our machine first serial interface to our SAMD21
MCU’s serial0 character device (listing 53). QEMU serial_hd() function re-
trieves the first serial device configured for our custom board and assign it to our
SERCOM0 interface, allowing the user to interact with it through a terminal.

1 /**
2 * We then set the MCU "serial0" property in order to use the

3 * first defined serial hardware device specified in command

4 * line.

5 */

6 qdev_prop_set_chr(DEVICE(&s->samd21), "serial0", serial_hd(0));

Listing 53. Qb Lil’board serial interface initialization

10.2 Creating and plugging an external SPI Flash

Once our MCU and its interfaces initialized, we can create an SPI Flash
device and connect it to our MCU’s SERCOM4 interface similarly to our real
custom board (listing 54). This flash device will be linked to a character device
which content will be used as this Flash chip content, and this behavior is im-
plemented off-the-shelf in QEMU’s M25P80 Flash chip emulation code. This
flash chip will be created and connected to SERCOM4 if and only if at least one
device drive is provided through QEMU command-line arguments.

We use QEMU’s qdev_new() to dynamically create a specific device, in our
case an SST25VF016B Flash chip, and we connect it to SERCOM4’s interface
SSI bus with a call to qdev_realize_and_unref(). Last but not least, we also need
to tie this chip CS line to a dedicated GPIO (#21) of our SAMD21 MCU with a
call to qdev_connect_gpio_out().

Damien «virtualabs» Cauquil 57

1 /* Look for a block device that represents our SPI flash device

content. */↪→

2 di = drive_get(IF_NONE, 0, 0);

3 blk = di ? blk_by_legacy_dinfo(di) : NULL;

4 if (blk != NULL)

5 {

6 /* Create an SPI flash device and attach to

7 SERCOM4 SSI interface. */

8 dev = qdev_new("sst25vf016b");

9 qdev_prop_set_drive(dev, "drive", blk);

10 qdev_prop_set_uint8(dev, "cs", 0);

11 qdev_realize_and_unref(

12 dev, BUS(s->samd21.sercom[4].ssi), &error_fatal);

13

14 /* Connect Flash CS line to our GPIO. */

15 cs_line = qdev_get_gpio_in_named(dev, SSI_GPIO_CS, 0);

16 qdev_connect_gpio_out(DEVICE(&s->samd21.port), 21, cs_line);

17 }

Listing 54. Flash creation

58 Tame the (q)emu: debug firmware on custom emulated board

1 ./qemu-system-arm -M qb-lilboard --kernel /tmp/QemuTest.ino.elf

-drive file=flash.bin,if=none,format=raw -serial stdio↪→

2 ___ _ _ _ _ _ ____ _

3 / _ \| |__ | | (_) () __) ___ __ _ _ __ __| |

4 | | | | '_ \ | | | | |/| _ \ / _ \ / _` | '__/ _` |

5 | |_| | |_) | | |___| | | | |_) | (_) | (_| | | | (_| |

6 ____.__/ |_____|_|_| |____/ ___/ __,_|_| __,_|

7

8 Loading 16 bytes from SPI Flash ...

9 HEX>>> 48 65 6C 6C 6F 20 57 6F 72 6C 64 20 21 0 0 0

10 CHR>>> H e l l o W o r l d !

11

12 Enter some text> test

13 > You wrote: test

14 Enter some text>

Listing 55. Testing firmware

11 Debugging our custom board

This section will cover how the previously defined emulated board can be
used for debugging and vulnerability research. We use a test firmware to check
that everything is working fine.

11.1 Testing UART and SPI communication

First, we write a small program designed to run on this board that will read
the first 16 bytes of the external Flash memory, compile it and run it with QEMU
(listing 55).

We provide QEMU with a flash.bin binary file containing the content of
Flash memory (starting with Hello World !) and emulate the firmware,
which reads the first 16 bytes from the emulated Flash memory and return them
on its main UART interface (SERCOM0). Everything works as expected as the
SPI interface operates properly and the user can interact with the firmware’s
UART interface through the terminal.

11.2 Debugging a firmware with GDB

QEMU can be started with a GDB server attached using the -s option that
will open a GDB server on port 1234 allowing to debug the target CPU and

Damien «virtualabs» Cauquil 59

memory. It can be combined with the -S option that will launch the emulated
board in a paused state:

1 $./qemu-system-arm -M qb-lilboard -serial stdio -kernel

./firmware.bin -s -S↪→

Listing 56. Emulating our firmware with GDB server enabled

And we can then use gdb-multiarch to debug the emulated board mi-
crocontroller:

1 (gdb) set arch arm

2 The target architecture is set to "arm".

3 (gdb) target remote :1234

4 Remote debugging using :1234

5 warning: No executable has been specified and target does not

support↪→

6 determining executable automatically. Try using the "file"

command.↪→

7 0x00000280 in ?? ()

8 (gdb) x/20i $pc

9 => 0x280: push {r4, r5, r6, lr}

10 0x282: ldr r1, [pc, #60] @ (0x2c0)

11 0x284: ldr r4, [pc, #60] @ (0x2c4)

12 0x286: cmp r1, r4

13 0x288: bne.n 0x294

14 0x28a: bl 0x390

15 [...]

16 (gdb) c

17 Continuing.

Listing 57. Debugging with gdb-multiarch

12 Discussion

QEMU provides a lot more features that may open a world of possibilities
to the security researcher, some of them being used by tools like Avatar2[1] for

60 Tame the (q)emu: debug firmware on custom emulated board

instance, like UNIX or UDP sockets used to allow QEMU to communicate with
external tools. We can imagine some interesting possibilities regarding radio
transceivers emulation, like offering the possibility to send raw packets normally
sent over the air by some hardware peripheral to a UNIX socket and receiving
raw packets from the same socket, allowing any external tool to fuzz RF packets
and monitor the firmware through GDB.

Some recent research work like GDBFuzz[5] may also been used to perform
a greybox fuzzing of a firmware with high performances on a custom board
emulated by QEMU.

13 Conclusion

At first sight, QEMU may look like a huge monster piece of code that would
be difficult to apprehend and modify, especially its internals. But QEMU is in
fact a clever software with well-thought mechanisms that abstracts most of the
hard work and provides the developer with some basic tools that are enough for
most of the embedded devices he/she may want to emulate. The QEMU Object
Model plays an important role as it allows modularity and reusability: one can
add an SPI Flash device to a custom board in a few lines of C or simply assemble
a custom board from already existing pieces that can be simply put together and
interconnected.

We demonstrated in this paper that a very small subsets of API functions
are required to add support for a new microcontroller, its specific hardware pe-
ripherals, and a new custom board that supports debugging. We also provide a
complete documented example code based on the latest version of QEMU to
date (8.2.0) to illustrate the implementation of this custom board we designed
for training and vulnerability research.

References

[1] Avatar2. https://github.com/avatartwo/avatar2.
[2] Damien Cauquil. Meet Piotr, a firmware emulation tool for trainers and

researchers. 2021. URL: https://archives.pass-the-salt.
org/Pass%20the%20SALT/2021/slides/PTS2021-Talk-
16-piotr.pdf.

[3] Google. Welcome to the Android Emulator. https : / / android .
googlesource . com / platform / external / qemu / + /
2db80f7c1921a6f5d48b998378e3792e16c968a4 / README .
md.

https://github.com/avatartwo/avatar2
https://archives.pass-the-salt.org/Pass%20the%20SALT/2021/slides/PTS2021-Talk-16-piotr.pdf
https://archives.pass-the-salt.org/Pass%20the%20SALT/2021/slides/PTS2021-Talk-16-piotr.pdf
https://archives.pass-the-salt.org/Pass%20the%20SALT/2021/slides/PTS2021-Talk-16-piotr.pdf
https://android.googlesource.com/platform/external/qemu/+/2db80f7c1921a6f5d48b998378e3792e16c968a4/README.md
https://android.googlesource.com/platform/external/qemu/+/2db80f7c1921a6f5d48b998378e3792e16c968a4/README.md
https://android.googlesource.com/platform/external/qemu/+/2db80f7c1921a6f5d48b998378e3792e16c968a4/README.md
https://android.googlesource.com/platform/external/qemu/+/2db80f7c1921a6f5d48b998378e3792e16c968a4/README.md

Damien «virtualabs» Cauquil 61

[4] Stéphane Duverger (Airbus Security Lab). QEMU internals. 2021. URL:
https://airbus-seclab.github.io/qemu_blog/.

[5] Max Eisele, Daniel Ebert, Christopher Huth and Andreas Zeller. Fuzzing
Embedded Systems Using Debug Interfaces. 2023. URL: https : / /
publications . cispa . saarland / 3950 / 1 / issta23 -
gdbfuzz.pdf.

[6] Microchip. https : / / ww1 . microchip . com / downloads /
en / DeviceDoc / SAM _ D21 _ DA1 _ Family _ DataSheet _
DS40001882F.pdf.

[7] The QEMU Project. Internal QEMU APIs. URL: https://www.qemu.
org/docs/master/devel/index-api.html.

[8] The QEMU Project. The QEMU Object Model (QOM). URL: https:
//qemu-project.gitlab.io/qemu/devel/qom.html.

[9] The Unicorn Engine Project. https://www.unicorn-engine.
org/.

[10] Saumil Shah. EMUX (formerly ARMX) Firmware Emulation Framework.
URL: https://github.com/therealsaumil/emux.

[11] Kota Shima. High-Speed Simulator for R-Car S4 - Renesas QEMU Envi-
ronment. https://www.renesas.com/us/en/blogs/r-car-
s4-renesas-qemu-environment.

[12] Panda Team. Panda. https://panda.re/.

https://airbus-seclab.github.io/qemu_blog/
https://publications.cispa.saarland/3950/1/issta23-gdbfuzz.pdf
https://publications.cispa.saarland/3950/1/issta23-gdbfuzz.pdf
https://publications.cispa.saarland/3950/1/issta23-gdbfuzz.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf
https://www.qemu.org/docs/master/devel/index-api.html
https://www.qemu.org/docs/master/devel/index-api.html
https://qemu-project.gitlab.io/qemu/devel/qom.html
https://qemu-project.gitlab.io/qemu/devel/qom.html
https://www.unicorn-engine.org/
https://www.unicorn-engine.org/
https://github.com/therealsaumil/emux
https://www.renesas.com/us/en/blogs/r-car-s4-renesas-qemu-environment
https://www.renesas.com/us/en/blogs/r-car-s4-renesas-qemu-environment
https://panda.re/

	Tame the (q)emu: debug firmware on custom emulated board

