
Mercredi 05 Juin 2024

Roxane Cohen <rcohen@quarkslab.com>, PhD student
Robin David <rdavid@quarkslab.com>, R&D lead
Riccardo Mori <rmori@quarkslab.com>, Security engineer
Florian Yger <florian.yger@dauphine.psl.eu>, Associate professor
Fabrice Rossi <fabrice.rossi@dauphine.psl.eu>, Professor

QBinDiff : A modular differ to enhance binary
diffing and graph alignment

SSTIC 2024

mailto:rdavid@quarkslab.com

2

Binary Diffing

2

Use-cases:
→ malware diffing (analysing updates, or common components between two variants)
→ patch analysis / 1-day analysis (understanding if patch is correct, or what is 1-day about)
→ anti-plagiarism
→ statically linked libraries identification (static binary against some libs)
→ symbol porting (e.g: IDA annotations to a new version of a binary)
→ backdoor detection (legitimate binary against a modified version)
→ cross-architecture diffing (for symbol porting etc..)

Goal is comparing two (or more) binaries to analyze their differences. It usually done using
functions with a 1-to-1 mapping computation.
(which can be problematic when functions are merged or split)

Introduction

Impact of optimization & obfuscation

33

-O0 Compilation
(no optimization)

-O2 Compilation
(optimization)

Obfuscation
(virtualization)

Motivation: Our use-case

44

➤ Two banks (area) in the same binary

➤ Specified subset of functions

➤ Obfuscated binaries

Edge-cases

Core Ideas:
● Observation: Multiple obfuscations alters function contents but not the overall program call

graph (because harder to put in practice)

● Need: We want to diff/relates/compare obfuscated binaries without having to deobfuscate
them first.

● Wish: We want to bring manually acquired knowledge for the diff e.g: anchors, specific
features etc.

⇒ Can improve diff using resilient features, analyst knowledge

Diffing ain’t Similarity

55

f1
f2
f3
…
fk

f

Binary similarity Binary diffing

Diffing = Similarity + Matching
(from similarity scores, create an

assignment…)

Which function is the most similar to
f among a pool of size k ?

What is the best mapping between
functions of primary and secondary ?

f1
f2
f3
…
fk

f1
f2
f3
…
fk

primary secondary

QBinDiff

QBindiff

77

Algorithm: Solve the Network Alignment Problem using
an optimization algorithm based on message passing
(belief propagation) to arbitrate function similarity and
call-graph topology.

Key Features:
● Disassembler agnostic (use exported representation)
● Standalone program
● Python API (to be used programmatically)
● Two APIs:

○ High-level for binary diffing
○ Low-level for arbitrary diffing (matrices as input)

● Designed to be modular!
Blog ↗

TL;DR: Anything that can be encoded as features and a graph can be diffed!

https://blog.quarkslab.com/qbindiff-a-modular-diffing-toolkit.html

In-house
exporter

Diffing Landscape

Diaphora Bindiff Radiff2 QBindiff Ghidriff

Language Python Java C Python Python

IDA ✔ ✔ ✘ ✔ ✘

Ghidra ✘ ✔ ✘ ✔ ✔

Binja ✘ ✔ ✘ ✔ ✘

Radare2 ✘ ✘ ✔ ✘ ✘

Exporter SQLite Binexport n/c Binexport
Quokka n/c

Scripting API ✔ ✘ n/c ✔ n/c

Use decompiler ✔ ✘ ✘ ✘ n/c
88

D
is

as
se

m
bl

er

✔ decompiler
✘ exporter
✔ precision
✘ recall

✔ fast
✘ no API (not

modular)
✔ now OSS
✔ disass agnostic

✔ modular
✘ memory & time
✘ power-user
✔ generic API

https://github.com/quarkslab/quokka
https://github.com/quarkslab/quokka
https://github.com/joxeankoret/diaphora
https://www.zynamics.com/bindiff.html
https://r2wiki.readthedocs.io/en/latest/tools/radiff2/
https://github.com/quarkslab/qbindiff
https://clearbluejar.github.io/ghidriff/

Algorithm

99

Sample 1 (#M nodes) Sample 2 (#N nodes)

Algorithm

1010

Sample 1 (#M nodes) Sample 2 (#N nodes)

Features
(# nodes, # edges,

cyclomatic complexity…)

4, 4, 2… 3, 2, 1…0 < Similarity < 1

Features
(# nodes, # edges,

cyclomatic complexity…)

Algorithm

1111

Sample 1 (#M nodes) Sample 2 (#N nodes)

Algorithm

1212

Algorithm

1313

Goal: Arbitrate
between function
similarity and
call-graph topology to
be more resilient if one
of them is altered (+ still
use imported functions
as anchors)

We said Modular ?

1414⇒ Obtaining a good diff might require fine tuning parameters.

➤ features: 27 functions features (some taken from diaphora / bindiff)
➤ distance: cosine, euclidean, haussmann (custom one)
➤ tradeoff: cursor on function similarity or call graph topology
➤ sparsity ratio: percentage of candidate matches to keep in similarity matrix
➤ epsilon: Relaxation parameter (helps converging faster)
➤ iterations: max number of belief propagation steps

⇒ We provide “best” default values for each of them

General Parameters

➤ custom executable format (to load arbitrary file)
➤ can diff anything by providing low-level matrices
➤ can develop custom features

“e.g: compilation unit aware feature where functions from the same CU, shall be close
to their sibling in terms of addresses or order in the binary”

Developers Modularity

QBinDiff Usage

1515

from qbindiff import QBinDiff, Program

from qbindiff.features import CyclomaticComplexity # etc

p1 = Program("primary.BinExport")

p2 = Program("secondary.BinExport")

differ = QBinDiff(p1, p2)

differ.register_feature_extractor(CyclomaticComplexity, 1.0)

register your features

differ.process()

mapping = differ.compute_matching()

do anything you want if the result

$ qbindiff primary.BinExport \

 secondary.BinExport \

 -ff bindiff -o result.BinDiff \ # output in bindiff format

 -a1 CS_ARCH_ARM:CS_MODE_THUMB \ # with .BinExport better to

 -a2 CS_ARCH_ARM:CS_MODE_THUMB # specify arch in capstone

File loading ━━

100% 0:00:00

Initialization ━━

100% 0:00:00

Matching ━━

100% 0:00:00

Saving Results ━━

100% 0:00:00

┌────────────┬─────────────────────┐

│ Score │ 206.0000 │

│ Similarity │ 108.0000 │

│ Squares │ 98 │

│ Nb matches │ 108 │

├────────────┼─────────────────────┤

│ Node cover │ 100.000% / 100.000% │

│ Edge cover │ 100.000% / 100.000% │

└────────────┴─────────────────────┘

⇒ Output is either a CSV or a .BinDiff file (to open it with bindiff)

Command line API usage

16

Benchmarks

Diffing Evaluation

1717

F1-score = 2 x P x R
 P + R

How can we compare the functions pair that should be matched (Ground-Truth)
and the functions that are matched by a differ on stripped binaries ?

True Positives
good match

correctly identified

False Positives
wrong match

identified

True Negative
Not a match

considered as-is

False Negative
Good match not

identified

 Precision =
+

 Recall =
+ ⇒

18

Benchmarks

18

Standard differ f1-score comparison in a
cross-optimizer/optimization setting

(differ robustness against compilation variation)

19

Benchmarks

19

Quokka is better
than BinExport
(exporter matters)

Standard differ f1-score comparison in a
cross-optimizer/optimization setting

(differ robustness against compilation variation)

20

Benchmarks

20

QBinDiff
performs better

compared to
other differs

Standard differ f1-score comparison in a
cross-optimizer/optimization setting

(differ robustness against compilation variation)

Glimpse of Obfuscation (results)

2121

QBinDiff feature impact : stable, full and unstable features
(Control-Flow Graph Flattening f1-score evolution)

What about diffing
other things ?

22

23

Smart Contracts

23

⇒ Diffing two closed-source smart
contracts using pyevmasm for
disassembly, EtherSolve for CFG
and call graph reconstruction.

⇒ Low-level API diffing with Qbindiff !

(examples by Elouan Wauquier)

24

Application to other fields

24

⇒ Low-Level API enables diffing anything, inputs are similarity matrix and relationship graphs.

25

Application to other fields

25

⇒ Low-Level API enables diffing anything, inputs are similarity matrix and relationship graphs.

PPI

Homo-sapiens Mus musculus (mouse)

Bioinformatics: Protein-protein interactions
(node proteins, edge interactions between them)

26

Application to other fields

26

⇒ Low-Level API enables diffing anything, inputs are similarity matrix and relationship graphs.

PPI

Matching fingerprints using Minutiae
(Data from NIST dataset 302)

⇒ Generic optimization algorithms (binary diffing just a reification of the problem)

Homo-sapiens Mus musculus (mouse)

Bioinformatics: Protein-protein interactions
(node proteins, edge interactions between them)

https://www.nist.gov/itl/iad/image-group/nist-special-database-302

Conclusion

2727

Notes:
●
● Platform for experiments
● Actively maintained & answer questions

Huge Thanks:
● current contributors
● past contributors (Alexis Challande, Elie Mengin)

General Diffing
QbinDiff can diff anything (as long as you can compute similarity between objects and determine

relationships between objects)

Binary Diffing
On common cases standard differs do the job great !

For more specific use-cases Qbindiff is more adapted !

https://github.com/quarkslab/qbindiff/

To contribute..

$ pip install qbindiff

https://github.com/quarkslab/qbindiff/

Email:

Thank you
Contact information:

contact@quarkslab.com

@quarkslab

+33 1 58 30 81 51 Phone:

quarkslab.comWebsite:

28

mailto:contact@quarkslab.com
https://quarkslab.com/

