— =
 LEDGER |

‘l
Once upon a time in loT S@(\7

An industry-grade OS DUTPOST
perspective for loT security =22

SSTIC 2024 - Patrice HAMEAU, Victor SERVANT, Philippe THIERRY, Florent VALETTE S STI [:
5-7 June 2024 SYMPOSIUMJ

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
"INF

-= What you will see (e.g. the agenda)

Once Upon A Time: last year!
2. YouwantaTUlI?
A New OS is born:
a. Welcome Outpost 0S:)
b. Key concepts & architecture
4. Security under the microscope
a. Security mechanisms
b. Resource isolation
c. Predictable execution
d. Runtime countermeasures & robustness
5. Let’s build it: the development environment
a. SDK and Integrator

Once upon a time in loT - Outpost OS

b. Reproducible build And secure development chain
Comparison with other OS es
Back to the future: what’s next
Conclusion of our journey
This is the end

© © N O

[|
L

Once upon a time in loT - Outpost OS

3-XX

Once upon a time...

Once upon a time in loT - Outpost OS

Once upon a time... last year!

SSTIC

SYMPOSIUM

S 23 presentation of deported Ul design:
o Isolated secure enclave inside a SoC.

o Driving a Trusted User Interface (input/output)

o Acting as a virtual display for Android OS

e Aiming at

o Supporting security-critical [y
user interactions through a oisplay | | Inpat oo
TrUSted UI o .:. General purpose

i i L processor
. e . | | (5o)
o Significantly reducing the | ese i |
attack surface compared to 1 ;\ |

ARM TrustZone or virtualized |

| Secure sub- system

implementations

— 1
| I |

Once upon a time in loT - Outpost OS

Forewords about Trusted User Interface (TUI)

e A secure, isolated, and trusted environment within a device,
in charge of user interactions

e Unlock trust of Ul based trusted functions (authentication,
transactions confirmations, ...)

e Key concepts in our product
o Our Web3 model relies on
driven by Secure Element

e New products... going to higher Ul resolutions implies:

o With increased complexity of the firmware stack

Once upon a time in loT - Outpost OS

Let’'s design TUI for a high resolution display in embedded device!
e We already have the Secure Element Operating System (BOLOS)
e Let's add a MCU as Secure Element graphical co-processor

.. but we need a secure and robust OS on this MCU for the TUI!
.. and we have not found an open one that check all our boxes (=

e e e e e e e e e e e —
: / MCU TUI \ :
| / Secure EIement\ CPU |

MIPI DSI
| oPL RAM FLASH | > |
.SOIUARTI RAM || FLASH 272 Secure OS :
-~
I ‘ BOLOS OS Graphic Touch S I
GPIO
I ‘ Apﬁ” | ‘ ApE’N QRCode Camera DCMI Button | I
| (code) (code) / K /<—| Camera | |
_—e— e e e . . e e e EEEE e T S T DS DS S S S . E— —
Isolated TUI

All TUI elements are hardware-isolated by the Secure Element from device external interfaces (USB, BLE, ...)

[|
| |

upon a time in loT - Outpost OS

Once

7-XX

A new OS is born...

— 1
| I |

Once upon a time in loT - Outpost OS

A new OS is born

e (55 So the we have not found the OS of our dreams from our wish list:

o Industrial-grade Operating System
o With high level of security and robustness

o Complete Software Development Kit

o Project-oriented and trustable development
chain

o Open-Source and auditable by our customers

e Ok, not a problem, let’s develop another one (yes we knew
where we were going here from our past experiences ')

e Solet’s start the journey of a new OS
... and its name is Outpost OS

— 1
| I |

Once upon a time in loT - Outpost OS

OS requirements

Supports
mixed
languages,
licenses, trust
% level Support

for auditable
runtime security
mechanisms

non-invasives
attacks
considerations

Reproducible

for portability, & secure build

with multiple
architectures
and usages

Security &
conformity

Compact,
N short latency
{4
6& OS for modern
&) Ul
N\

— 1
| I |

Once upon a time in loT - Outpost OS

10-XX

Experience-based Key concepts & Architecture

@ —Auditable TCB

o——

. Frama-C usage
micro-kernel

Preempitve model

Strict memory partitioning

.—

pIuggabI\é schedulers

Execution /..

Heterogeneous Core o t L

licensing support ust supp
Conformit Ky ——Languages
’_SBOM support concepts
/O POSIX-PSE51 subset
SCAP CPE support Workflow C support
Separated dev and
I/0 pushed to integration env

dedicated tasks Asynchronous I/0 support o
/ Multi-projects
\ Building blocks

[|
| |

Once upon a time in loT - Outpost OS

11-XX

Security under the
microscope

— 1
| I |

Once upon a time in loT - Outpost OS

12-XX

Resources Isolations

dedicated and pre-allocated exclusive resources
Using a three-third content repartition

Init-time consistency check

Kernel enforce run-time ressources isolation

=T I=
A e e e e pgmmmm J
application " 'metadata
Per task N
task content layout definition

text capabilities

data, list of devices
rodata, list of IRQ
GoT list of SHM

sections hashes

— 1
| I |

Once upon a time in loT - Outpost OS

13-XX

Communication channels

IPC communications using model

support

, defined as ressources with ownership and permissions

separating communicant task sets

enhanced support (start & termination models, start capability)

IPC ——signal
signal—, signal signal IPC IPC
T1 T2 T3 T4 TS T6 T7 T8
U starts
N J o\ A J
s 2's s

— 1
| I |

Once upon a time in loT - Outpost OS

14-XX

Security Mechanisms

between kernel and userspace
accessible from kernel

Syscall-based using MPU
Bus-master ressources are
of
user applications
SW & HW I
ressources access 1. set syscall Task RAM |
Whole kernel code referenced argument = v 2 reduce accessible
content X memory
checked for svc exchange area !
|
a a 3. get references (no :r) :
address passed) | q J'
Software Analyzers —-— { Gate ”
Kernel

Once upon a time in loT - Outpost OS

15

Measured Execution

Security
e NO resources S { Task Rl
° IR Q syfttnl call i

° kernel paths & _— h

submodule
time-check/CFl

e Dyn data

Service L__—___| [USEE

<\Ié—>
Tstructures ~
L’— submodule 47- dyn data hash
Robustnhess C‘a

e Deadlock E

[] RRMQ* SCthUler,) sporaz!dic

integrity check
1
|

MPU, kernel
devices

Unpreemptible <

*: Round-Robin with Multi-queue and Quantum

— 1
| I |

Once upon a time in loT - Outpost OS

16

Runtime counter-measures

e Huge usage of
random seeds
e Task identifier fully
a task (re)start
e Loop double counters for critical
code blocks
e Watchdog-based

(overconsumption, CFl check
failure...)

) on
backuped memory

° abnormal
events at boot-time

= =

security-critical section

; >
I
|
i
no abnormal event ?
stop watchdog
I

|

: |

L | S not stopped ?
\ " watchdog interrupt

start HW watchdog

[|
| |

Once upon a time in loT - Outpost OS

17-XX

Let’s build it:

A development
environment with the
greatest of care

— 1
| I |

Once upon a time in loT - Outpost OS

18-XX

Software Development Kit

e Tools and resources needed to build user applications
o Kernel UAPI
o Application linker script template

e Delivered by integrator for a specific board/project

e Single root of trust for configurable parameters

e A SDKis compiled for each kernel to enforce consistency
Tailored to chosen kernel configuration
Supports C and Rust (as a start and encouraged)

O O O O

Provides tools: Kconfig, generation,

Provides pkg-config files and Cargo local registry for UAPI

, etc.

— 1
| I |

Once upon a time in loT - Outpost OS

19-XX

Integrator Kit
e Use the same kernel configuration as SDK
e Enforce consistency checks at build time
o Resources ownership
o Syscall Capabilities per application
e Relocate applications independently

o No link step between applications
o Increase isolation and allows licenses mix

D integrator workspace

D software components
drvl

project workspace

project definition

- components list
- dts name

- config name(s)

S— target device tree source

Ty 1y

- | target config (Kconfig)

lib2
> lib2
libl-1 4 appl app2 app3

Integrator
GPG key

— 1
| I |

Once upon a time in loT - Outpost OS

20

Reproducible Build and Secure Development Chain

e Build system based on:
o KConfig for configuration, Devicetree for board description.
o Ninja build script with Meson and Cargo package support
e Handles at each stage to enforce a trusted development chain.
e The Integrator Kit delivers a and , that:
o Ensure traceability, authenticity for |nput artefacts
o Allow automatic detection of vulnerability (CVE-xxx), COTS update, and
licences management.

©@ ©

nnnnnnnnnnnnn

— 1
| I |

Once upon a time in loT - Outpost OS

21

— 1
| I |

Once upon a time in loT - Outpost OS

22

Notes:
1.

Comparison with other OSes:

e Where is Outpost in regards of main functionalities we were searching for?

Characteristic
Highly secure and robust (isolation)
Micro-Kernel
Open-Source
SDK with C & Rust support
Built components authentication
Integration Kit

SBOM and SCPA generation’

SBOM: Software Bill Of Material; SCAP: Security Content Automation Protocol

Mbed

X
X

X X XX

TockOS FreeRTOS Wookey

~

X X X

X
X

(unsecure only)

~

X X X

~

XIXIXIX NS

Zephyr
X

)

)
. -
S
e
S
e
) >
= D
= -
S »
%
O
©
af)

What

—
L
(Il

SO 1sodinQ - 10j ui dwi e uodn 8duQ

€¢

— 1
| I |

Once upon a time in loT - Outpost OS

24

What’'s next ?

logging and post-mortem checks

Drivers framework & OSS drivers in SDK

Cryptographic signature fully integrated in Integrator Kit
Complete system upgrade mechanism

Complete low-power management

ARMv8-M Secure-boot integration

Enforced in-depth fault injection counter-measures
Integrator’s Kit SCAP & CPE generator

Integrator’s Kit security compliance analysis tool (“aka product
configuration security level”)

Generic tooling built for SDK and IK open-sourced (Apache-2.0)

> here: , 0
SDK and IK meta toolkit on the go for OSS (Apache 2.0)
Sentry kernel cleanup and finalization on the go (Apache 2.0)
Userspace libraries & drivers : discussions on Licensing (Apache vs
BSD or dual-licensing model)

— 1
| I |

Once upon a time in loT - Outpost OS

25

So, this is our journey

Once upon a time in loT - Outpost OS

26

So this is our Journey:

e Ourdeparture:

o To address new fancy displays, we were searching for a secure
OS for a MCU used as graphic coprocessor

o Of our constraints, notably highly secure and auditable source
code, our research has not yielded anything

=So we decided to develop one: Outpost OS

Our base camp today: {i}
/ o Microkernel architecture with high security and robustness at core.
o7 \17 o All applications and resources fully isolated. &

,_JLLL\ o A SDK supporting C and Rust memory-safe language. h

o A toolchain supporting independent development and 0 PUt Lo
. . A Index
secure integration processes. MESON F
e Till our next destination: o

o Support completely Cortex-M v7/8 and RISC-V architectures. < A

RISC-\/*

o Once ready, apply Ledger open-sourcing philosophy to make it
available for review and improvements

\

APACHE?2

[|
| |

)33.2,, {
\TWN—=2

SO 1sodinQ - 10j ui dwi e uodn 8duQ

