
Once upon a time in IoT

An industry-grade OS
perspective for IoT security

SSTIC 2024 - Patrice HAMEAU, Victor SERVANT, Philippe THIERRY, Florent VALETTE
5-7 June 2024

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S

1. Once Upon A Time: last year!
2. You want a TUI?
3. A New OS is born:

a. Welcome Outpost OS :)
b. Key concepts & architecture

4. Security under the microscope
a. Security mechanisms
b. Resource isolation
c. Predictable execution
d. Runtime countermeasures & robustness

5. Let’s build it: the development environment
a. SDK and Integrator
b. Reproducible build And secure development chain

6. Comparison with other OS es
7. Back to the future: what’s next
8. Conclusion of our journey
9. This is the end

2
What you will see (e.g. the agenda)

Once upon a time…

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
3-

XX

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
4

● Aiming at
○ Supporting security-critical

user interactions through a
Trusted UI

○ Significantly reducing the
attack surface compared to
ARM TrustZone or virtualized
implementations

● ‘23 presentation of deported UI design:
○ Isolated secure enclave inside a SoC.

○ Driving a Trusted User Interface (input/output)

○ Acting as a virtual display for Android OS

Once upon a time… last year!

Forewords about Trusted User Interface (TUI)
O

nc
e

up
on

 a
 ti

m
e

in
 Io

T
-

O
ut

po
st

 O
S

5

● Key concepts in our product
○ Our Web3 model relies on security-critical TUI interface

(WYSIWYSign) driven by Secure Element

● A secure, isolated, and trusted environment within a device,
in charge of user interactions

● Unlock trust of UI based trusted functions (authentication,
transactions confirmations, …)

● New products… going to higher UI resolutions implies:
○ New hardware architecture with UI co-processor
○ With increased complexity of the firmware stack
○ While keeping highest security and robustness levels
○ And reusability for future products in regards of needed

investments

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
6

● We already have the Secure Element Operating System (BOLOS)

Display

Touch
Button

Secure Element

CPU

RAM FLASH

MIPI DSI

I2C

GPIO

BOLOS OS

App1
(code)

AppN
(code)

ISO/UART

Isolated TUI
All TUI elements are hardware-isolated by the Secure Element from device external interfaces (USB, BLE, …)

CameraDCMI

MCU TUI

CPU

RAM FLASH

??? Secure OS

Graphic Touch

CameraQRCode

● Let’s add a MCU as Secure Element graphical co-processor

Let’s design TUI for a high resolution display in embedded device!

… but we need a secure and robust OS on this MCU for the TUI!
… and we have not found an open one that check all our boxes 😞

A new OS is born…

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
7-

XX

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
8

A new OS is born

● 😔😔 So the we have not found the OS of our dreams from our wish list:

○ Industrial-grade Operating System
○ With high level of security and robustness
○ Full isolation of resources and applications
○ Complete Software Development Kit
○ Project-oriented and trustable development

chain
○ Open-Source and auditable by our customers

● Ok, not a problem, let’s develop another one (yes we knew
where we were going here from our past experiences 😅!)

● So let’s start the journey of a new OS
… and its name is Outpost OS

easy to use

fast

licenses

Small

multi-languages

portable

mod
ula

r

OSS

Industrial

certif
iable

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
9

Compact,
short latency

OS for modern
UI

Supports
mixed

languages,
licenses, trust

level
Strong

partitioning,
non-invasives

 attacks
considerations

Support
for auditable

runtime security
mechanisms

Reproducible
& secure build

Security &
conformity

reports

Support
for portability,
 with multiple
architectures
 and usages

OS requirements
static alloc

latency

micro-kernel

auditable
isolation

signed build

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
10

-X
X

Experience-based Key concepts & Architecture

Security under the
microscope

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
11

-X
X

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
12

-X
X

Resources Isolations

● dedicated and pre-allocated exclusive resources
● Using a three-third content repartition
● Init-time consistency check
● Kernel enforce run-time ressources isolation

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
13

-X
X

Communication channels

● IPC communications using single copy model
● Signals support
● Shared memories, defined as ressources with ownership and permissions
● Domains separating communicant task sets
● Lifecycle enhanced support (start & termination models, start capability)

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
14

-X
X

Security Mechanisms

● No address dereference between kernel and userspace
● No task private data accessible from kernel
● Syscall-based ressource (un)mapping using MPU
● Bus-master ressources are

not under direct control of
user applications

● Capability-based SW & HW
ressources access

● Whole kernel code
checked for correctness

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
15

Measured Execution

Security
● No dynamic resources
● IRQ non-reentrant
● Measured kernel paths &

CFI
● Dyn data integrity

Robustness
● Deadlock detection
● RRMQ* scheduler, no

starvation

*: Round-Robin with Multi-queue and Quantum

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
16

Runtime counter-measures

● Huge usage of boot-time forged
random seeds

● Task identifier fully regenerated
each time a task (re)start

● Loop double counters for critical
code blocks

● Watchdog-based abnormal
event detection
(overconsumption, CFI check
failure…)

● Storage of abnormal events on
backuped memory

● Check of previous abnormal
events at boot-time

Let’s build it:

A development
environment with the
greatest of careO

nc
e

up
on

 a
 ti

m
e

in
 Io

T
-

O
ut

po
st

 O
S

17
-X

X

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
18

-X
X

● Tools and resources needed to build user applications
○ Kernel UAPI
○ Application linker script template

● Delivered by integrator for a specific board/project
● Single root of trust for configurable parameters

Software Development Kit

● A SDK is compiled for each kernel to enforce consistency
○ Tailored to chosen kernel configuration
○ Supports C and Rust (as a start and encouraged)
○ Provides pkg-config files and Cargo local registry for UAPI
○ Provides tools: Kconfig, metadata generation, signature, etc.

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
19

-X
X

● Use the same kernel configuration as SDK
● Enforce consistency checks at build time

○ Resources ownership
○ Syscall Capabilities per application

● Relocate applications independently
○ No link step between applications
○ Increase isolation and allows licenses mix

Integrator Kit

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
20

Reproducible Build and Secure Development Chain

● Build system based on:
○ KConfig for configuration, Devicetree for board description.
○ Ninja build script with Meson and Cargo package support

● Handles GPG keys at each stage to enforce a trusted development chain.
● The Integrator Kit delivers a signed SBOM, build manifest and CPE, that:

○ Ensure traceability, authenticity for input artefacts
○ Allow automatic detection of vulnerability (CVE-xxx), COTS update, and

licences management.

Comparison with other OSes

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
21

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
22

Comparison with other OSes:
● Where is Outpost in regards of main functionalities we were searching for?

Notes:
1. SBOM: Software Bill Of Material; SCAP: Security Content Automation Protocol

Characteristic Mbed TockOS FreeRTOS Wookey Zephyr

Highly secure and robust (isolation) ❌ ~ ❌ ~ ❌

Micro-Kernel ❌ ✅ ❌ ✅ ❌

Open-Source ✅ ✅ ~(unsecure only) ✅ ✅

SDK with C & Rust support ❌ ✅ ~ ❌ ~

Built components authentication ❌ ❌ ❌ ❌ ~(west)

Integration Kit ❌ ❌ ❌ ❌ ❌

SBOM and SCPA generation1 ❌ ❌ ❌ ❌ ❌

Back to the future…

What’s next

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
23

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
24

What’s next ?

M
is

si
ng

fe

at
ur

es

❖ logging and post-mortem checks
❖ Drivers framework & OSS drivers in SDK
❖ Cryptographic signature fully integrated in Integrator Kit
❖ Complete system upgrade mechanism
❖ Complete low-power management

❖ ARMv8-M Secure-boot integration
❖ Enforced in-depth fault injection counter-measures
❖ Integrator’s Kit SCAP & CPE generator
❖ Integrator’s Kit security compliance analysis tool (“aka product

configuration security level”)H
ar

de
ne

d
pr

od
uc

t

❖ Generic tooling built for SDK and IK open-sourced (Apache-2.0)
➢ here: svd2json, dts-utils 👀

❖ SDK and IK meta toolkit on the go for OSS (Apache 2.0)
❖ Sentry kernel cleanup and finalization on the go (Apache 2.0)
❖ Userspace libraries & drivers : discussions on Licensing (Apache vs

BSD or dual-licensing model)

O
SS

 &

lic
en

si
ng

So, this is our journey

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
25

● Our base camp today:
○ Microkernel architecture with high security and robustness at core.

○ All applications and resources fully isolated.
○ A SDK supporting C and Rust memory-safe language.

○ A toolchain supporting independent development and
secure integration processes.

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
26

● Our departure:
○ To address new fancy displays, we were searching for a secure

OS for a MCU used as graphic coprocessor
○ Of our constraints, notably highly secure and auditable source

code, our research has not yielded anything

=>So we decided to develop one: Outpost OS

● Till our next destination:
○ Support completely Cortex-M v7/8 and RISC-V architectures.

○ Once ready, apply Ledger open-sourcing philosophy to make it
available for review and improvements

So this is our Journey:

This is the
end!

We love questions 😎

O
nc

e
up

on
 a

 ti
m

e
in

 Io
T

-
O

ut
po

st
 O

S
27

