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Abstract. Last year [24] we started to work on a separated deported
UI 1 designed to support an efficient secured and trusted display manage-
ment with enhanced security level as alternative to technologies such as
TrustZone. The goal was to be able to securely receive, manipulate and
display requests from an eSE 2 in a separated, dedicated, control/data
plane, with non-secure parts outside of this plane fully unaware of such a
path.

In the meantime, we have worked on a more formal specification on
how to properly support a deported UI in our products, while still
including our initial use cases as defined in [24]. Our work has been
focused on deported trusted and secured UI architectures where an eSE
drives directly an auxiliary UI component. Considering also our needs for
modern UI rendering, we have then started to look on how to implement
such an architecture on various MCUs,3 such as the STM32 family from
STMicroelectronics, yet with portability in mind.

After an in-depth review of the state of art, no convincing open solution
has been identified on MCUs for hosting the firmware pieces of such
deported UI. From there is born a new secure and versatile Operating
System (OS), denoted Outpost OS, conceived to support at the very
same time code integration of various origins, runtime isolation, high
level of robustness and security, and industrialization and maintenance
constraints. This article presents this new OS and its main associated
concepts.

1 Introduction

1.1 Deported UI needs

Following the work conducted and previously published in
SSTIC 2023 [24] we have converged on a general architecture hardware
design for our various secure and trusted deported UIs use cases. These
use cases require a separated, dedicated UI controller, as described in

1 User Interface
2 embedded Secure Element
3 Micro Controller’s Unit
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Figure 1. Such an architecture was tested with a bare metal firmware to
validate its feasibility and performances, and the results were described in
the previous year’s article.

Fig. 1. High level view of secure and trusted deported UI architecture

Since then, we took time to review and formally specify the function-
ality, industrial and security needs and their impacts of an ideal software
architecture for such a deported UI architecture. This step has been very
valuable as it has lead us to formalize and refine the following aspects:

— Defining a strong and mature enough basis for our architectural and
security model to enforce the system robustness, considered threats,
and take into account the optional need of security certification
process

— Easing the management of the technical debt associated to the
MCU’s software ecosystem during the natural evolution of the
product lines

— Taking into account the constraints of industrially produced and
maintained secure IoT devices (different developments environ-
ments, lifecycle and constraints for the parts composing it, and
delivery management process)

From this study it has appeared that we need to use a secure Operating
System (OS) to support the deported UI functionality on the MCU acting
as the UI Controller. We have then defined more in details the requirements
for this secure OS, which will cover in the next paragraph.

1.2 Secure operating system requirements

As per the high level specification for a deported UI (as well as for
other future usages envisaged on our products we wanted to take into
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account at the same time) we have refined our needs for a secure OS as
per the following technical requirements list:

Requirement 1 The OS guarantees a high level of security and robust-
ness at runtime,4 with predefined application assets, full isolation (memory,
hardware resources. . . ) of each application runtime, and resistance to cer-
tain logical and non-invasive threats.

Requirement 2 The OS relies on micro-kernel concepts to minimize its
Trusted Code Base (TCB)

Requirement 3 The OS concepts, its build system and Application Pro-
gramming Interface (API) are not dedicated to a specific market or usage

Requirement 4 The OS is open-source, with a non-contagious license
model

Requirement 5 A SDK 5 tailored for a chosen OS configuration can be
easily built and delivered to application developers

Requirement 6 The OS supports applications developed at least in the
following programming languages: C11 and Rust (chosen to start as
memory-safe language)

Requirement 7 The application developer can rely on supported parts
of POSIX PSE-51-1 API [26] to ease application testing and portability

Requirement 8 Lifecycle, confidentiality, authenticity and traceability of
each component composing the device image shall be natively supported as
per OS architecture and integrated in the build system for both applications
developers and product integrator

Requirement 9 The product integrator can rely on a dedicated and au-
tonomous Integration Kit (IK) to build device images without needing to
be able to access to the application developer development environment,
and enforcing reproducible build.

Requirement 10 The product integrator’s Integration Kit (IK) complies
with the SCAP 6 framework (CPE 7 generation from delivery manifest)
and allows notably SBOM 8 generation

4 What is aimed here is detailed in Security Threat Model hereafter
5 Software Development Kit
6 Security Content Automation Protocol [42]
7 Common Platform Enumeration [41]
8 Software Bill of Materials
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The main reasons for these requirements is explained hereafter from
the considerations for security threats and industrial approach.

Security Threat Model :
We have though from the start that such an OS, aiming at being used
in small secure IoT devices, will be exposed to various attack scenarios.
As the OS software implementation will run on a MCU with ’moderate’
security level (at least considered as lower than the ones of an eSE 9) some
of these scenarios will be covered while others are voluntary kept out of
scope (in general as unmanageable using pure software implementation).
These scenarios have also been studied with a focus for our products
ecosystem and associated security needs (and thus encompassing the link
of the MCU with an eSE), but are however generic enough for most of
secure IoT devices projects.

From our security analysis, we have considered the following threat
model: 10

Threat 1 The adversary tries to tamper with the OS using logical attacks,
either through external inputs it may control or using applicative code parts
(bugs, trojan horses. . . )

Threat 2 The adversary tries to tamper the MCU using non-invasive
hardware attack (side-channel attacks. . . )

Threat 3 The adversary tries to corrupt the boot sequence or the boot
environment of the MCU before the start of the OS

Threat 4 The adversary tries to logically or physically tamper or replace
the external parts (external peripherals, cut PCB line. . . ) connected to the
MCU onto which run the OS

Threat 5 The adversary tries to tamper the MCU with semi-invasive or
invasive hardware attacks (silicon die access for micro-probing. . . )

All threats can’t be fully protected using software only counter-
measures, moreover on MCUs that, even if some of them embed more and
more efficient hardware security mechanisms, are not aiming to reach the
security resistance of an eSE.

9 embedded Secure Element
10 For the sake of clarity, the threat model presented here has been simplified with only

high level threats to keep this article short enough
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Although, a well-designed OS, in the framework of a global system
security architecture approach (notably if including the usage of an eSE
connected to the MCU onto which run the OS), can include multiple
defense in depth mechanisms increasing very significantly the necessary
attacker technical skills, required equipments and time to perform a
successful attack. This increase of attack complexity eases also the inclusion
of some ’intelligent’ attack detection mechanisms capable of identifying
various attack scenarios (e.g. internal integrity checks, measure of response
time of some services. . . ). Such defense in depth mechanisms have been
demonstrated in [3] and can be very efficient when setup as part of a
complete defense system composed of hardware, software and architectural
considerations.

We have separated in four main categories the support level of the OS
security counter-measures for each of considered threats:

— Fully Covered: The OS must integrate proper counter-measures to
be resistant against such threats (full coverage).

— Partially Covered: The OS must integrate counter-measures for at
least a part of such threat cases. The overall threat scenario may
not be covered by a software only approach in the OS, requiring a
hybrid hardware/software/architectural response for full coverage.

— Deferred: While not aiming at defeating completely such a threat,
the OS must include mechanisms to increase the necessary attack
level, or make the attack path unpredictable, or the attack highly
time-consuming. These counter-measures shall be seen here as part
of a more complete global defense mechanism which can imply also
other hardware and applicative counter-measures.

— Out of Scope: No dedicated software counter-measures is envisaged
in the OS (either as inefficient against considered threat or because
threat is not detectable at software level)

The Table 1 summarizes the support level of the OS counter-measures
in regard to each threat defined in the threat model above.

Threat Nature Fully Partially Deferred Out of Scope

Threat 1: Logical attack ✓

Threat 2: Non-invasive HW attack ✓

Threat 3: Early boot attack ✓

Threat 4: External env. corruption ✓

Threat 5: (Semi)Invasive HW attack ✓

Table 1. OS counter-measures support level vs considered threats
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Threat 1 - Logical attack: Responding to this threat includes
software architecture and defense in depth security features such as W ⊕X,
Stack Smashing Protection, strict memory and resources partitioning, etc.
These mechanisms are usual kernel-level security features (e.g. application
in non-privileged mode, usage of MPU to provide only access to application
resources, deterministic scheduler. . . ), above multiple others described
later. Response of such threat has also to be managed at application
level by using proper software design architecture as notably ensuring
efficient services separation based on the separation of concerns principle
(e.g. creating smaller, separated services instead of macro-services, using
separated SoCs for separated high level feature-sets, and so on). All these
threat responses require proper design of OS API. But also some OS
core properties (including efficient application switching and inter-process
communication) and build-system level features (notably to allow efficient
memory usage) to support such applicative software architecture based
on separation of services.

Threat 2 - Non-Invasive attack: Such threats family encompasses
attack that do not require alteration of the device, and can be subdivided in
several classes: to simplify we consider here only the side-channel and fault
injection ones. Side-channel threats (e.g. timing or power consumption
measurement on USB cable) can be addressed by OS core mechanisms to
mask with dedicated algorithms its internal operation and by offering some
dedicated API for supporting resistant algorithms at application level
(e.g. critical section). Fault injection threats (e.g. using power supply or
electromagnetic glitches) are much more complex to address by software
counter-measures only. Although, a well-defined software design with
counter-measures using proper methodology and algorithm to detect and
react to such threats can make them very complex or even impossible to
materialize. Such counter-measures include CFI 11 on critical data paths
such as system calls implementation, Hamming distance consideration or
memory protection setting and update paths. Several components in the
OS core shall include counter-measures against such fault injection threats
(e.g. MPU management), but other typical security-critical components
require also proper protection, such as the upgrade manager.

Threat 3 - Early boot attack: As this threat takes place before the
execution of the OS core runtime, and that the secure boot mechanism
is in charge of validating its integrity (and if needed its authenticity),
the OS core code cannot have fully efficient response against it. In some
configuration, the secure boot mechanism can leverage some secret token

11 Control Flow Integrity
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to the OS runtime that can be used afterwards to unlock some secret
required by the OS core, thus limiting access to sensitive data if boot
mechanism is completely bypassed. Such threat is indeed considered to be
covered by the secure boot mechanisms of the MCU that include ROM
and fuse usage [43]. We have thus considered for our model that the OS
integrity is fully in charge of the secure boot of the MCU. And then that
the OS core has to enforce the application integrity upon each boot, and
to validate the OS core and application authenticity upon an upgrade.

Threat 4 - External environment corruption: This kind of threat
is quite complex to thwart, but counter-measures such as timing measure-
ments and behaviors analysis can be considered as a good staring point
to detect unexpected alterations of unsecured peripheral components that
cannot include defense mechanisms such as authentication (touchscreens,
lcd panels. . . ). Most of the counter-measures to be implemented there will
be at peripheral driver level in application code. However, the OS core
shall provide enough support through its API to implement them (e.g.
precise timing measurements of some events, access to frequency or power
consumption data. . . ).

Threat 5 - Invasive attack: Such threats family are almost im-
possible to be countered by software, as most of the time they cannot
be detected by the runtime code alone. Either these attack aimed at
performing silent measurements (e.g. micro-probing on the MCU die) or
they consist in altering temporary or permanently the MCU hardware
itself, thus making the runtime OS code behave in an unexpected and
unpredictable way, and then having the implementation of its security
counter-measures ineffective. Even if software may help to react to such
attack once detected, the detection and prevention of such attack requires
to have dedicated hardware mechanisms which most of MCUs do not have.

In the end, all the threats not out of scope in the Table 1 (indeed a
much more detailed version from our internal analysis), as well as further
review of MCUs hardware counter-measures and known attack paths, have
been used to precisely define what we wanted to encompass in ’high level
of security and robustness at runtime’ in requirement 1, and has allowed
us to define a complete threat model and associated security objectives
wished for such an OS.

Industrial Model Approach :
From an industrial point of view, the requirements 8 and 9 are the con-
sequence of multiple industrial hypothesis, such as development lifecycle
and collaborative / non-collaborative considerations, with respect for the
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generic model defined in Figure 2. Typically, the overall software function-
ality may be delivered thanks to multiple teams or contractors, requiring
the usage of external statements of work or internal team repartition.
And as such it should not be constrained by a monolithic project-based
software design and should allow different entity to make independent
build of applications and integration in the device image.

Requirement 10 is a natural consequence of the previous ones, as it
allows one to automate the survey of vulnerabilities and ease the dispatch
of software update requirements to teams, contractors, etc., through a
formally defined and widely used component identification mechanism.

The requirements 6 and 7 have been defined to help in the inclusion
of C11 existing code, either as OSS,12 MCU manufacturer’s drivers and
library, or commercial code, while encouraging the writing of critical
applicative components in a memory safe language as Rust. The support
of a subset of POSIX PSE51-1 has also been added as an efficient helper
for business logic native testing on any POSIX-compliant host (e.g. linux)
and also as a possible enabler for easing the integration and the training
of developers.

Future-proofing is mostly ensured by requirement 3, with the aim of
ensuring that any new product can reuse as much as possible the OS
without having to generate per-project any specific codeblock in core
components. All project-specific parts are deported to user-space tasks,
and any common functionalities to any (sub-)product line can then be
shared through either a dedicated application or library without impacting
other projects that do not require it at all.

As open-sourcing is part of Ledger production model and user trust,
we also wanted to go for an open-source OS, as defined in 4. This requires
that the OS, with the constraints of such a model, be capable of handling
also strictly confidential value-added software blocks and ensure that they
may be kept confidential if needed. Nevertheless, proprietary but free to
use software, such as ThreadX [12] are problematic as soon as we wish to
include some missing security-critical value added at core level.

As soon as reusability of common components is a critical need, the
application developer’s environment and the product integrator’s one need
to be uncorrelated. Such a paradigm allows the application developer to
use an easy, potentially multi-products, SDK, while at the same time to
develop various common functionality that can be integrated as reusable
blocks for different products. Typical examples are the upgrade subsystem

12 Open-Source Softwares
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Fig. 2. Targeted typical generic embedded software delivery sequence
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or the key management service, but it can be also useful to other various
services. To support this separation, we have defined requirements 5 and 9.

Separating the business logic developer environment from the inte-
grator environment has multiple impacts. Component delivering, ABI 13

compliance (in case of binary integration) and developer authentication
mechanisms (such as usage of GPG signature to sign code, builds and
images) become there critical for enforcing end to end security of integra-
tion and delivery chains. This requires the developer’s environment and
project Integration Kit (IK) of the OS to have such security mechanisms
(signature generation and checks, manifest, role definition. . . ) integrated
by design. The requirement 8 is aiming at covering all these aspects.

1.3 Operating system state of the art

We took some time to perform a survey as exhaustive as possible
on existing OS candidates suitable in regard to our needs. It has been
found at the time of this article that mature and secure enough OSs
for IoT (based on ARM® Cortex-M or RISC-V RV32E CPUs) designed
with both high security and industrial-level considerations are mostly
closed-source or proprietary solutions: ThreadX [12], ProvenCore-M [35],
PikeOS [16] or SeL4 [30]. We have thus excluded them from our survey
(as per our requirement 4). Careful review of well known open source
OSs with security features brought us to the conclusion that they were
not fulfilling our robustness and security level requirements, or were not
tailored for industrial usage. We have thus finally not retained any of them
(for example Riot [8] based on previous analysis already done in [10, 11]).
Others potentially promising ones such as Muen [15] or Redox [33] have
also not been considered as targeting mainly hardware out of our scope
for IoT.

As a summary, the main results of our OSs survey are listed in Table 2.
The following symbols have been used in this table:

— ✓ : the requirement is fully supported
— ~ : the requirement is partially supported (plugin, partial support)
— ✗ : the requirement is not supported
— /∈: the requirement is not in the scope of the target

One of the point standing out from the open source OSs reviewed
is a lack of differentiation between the developer environment and the
product integrator environment, or even the absence of product integration
mechanism. Without such mechanism it is complicated to manage the

13 Application Binary Interface
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label MbedOS TockOS FreeRTOS Wookey Zephyr

R. 1: Secure ✗ ~‡
✗ ~ ✗

R. 2: µkernel ✗
⋆

✓ ✗ ✓ ✗

R. 3: COTS ✓ ✓ ✓ ✓ ✓

R. 4: OSS ✓ ✓ ~ ✓ ✓

R. 5: SDK ✓ ✓ ✓ ✓ ✓

R. 6: C, Rust ✗ ✓ ~ ✗ ~

R. 7: known API ~†
✓ ✓ ✓ ✓

R. 8: components authentication /∈ /∈ /∈ /∈ /∈

R. 9: integration kit (IK) /∈ /∈ /∈ /∈ /∈

R. 10: IK: SCAP & SBOM /∈ /∈ /∈ /∈ /∈

⋆ partitioning but no core kernel functions delivered
† CMSIS API is not POSIX and is not portable, but is yet a defacto standard API
‡ No SSP support

Table 2. secure Open-Source Operating systems for small IoT survey

separation of COTS 14 with internal developments, the sharing of various
core functionalities between applications, the separation of developments
teams, the release lifecycle management, and the maintenance (tracking
of bugs, CVEs. . . ).

In order not to exclude most of the found solutions, we have considered
there to lower our requirements for production integrations, by considering
redeveloping a set of proper product management and integration tools
on top of provided build toolchain. But it was no question however to
lower our robustness and security level requirements (including considering
future security certification needs), and here none of the analyzed open
source solution was fulfilling them. In the end, from this survey we came
unfortunately to the conclusion that no open source solution fulfilling our
requirements was available.

As a response to this lack of corresponding technical solution, we have
started to work on the specification and implementation of a new OS
denoted Outpost OS. From our previous experiences, we were conscious
that it would be a real challenge. But also that it will respond to an
unmet need to have at disposal a generic secure OS for various IoT devices
types that will support state-of-the-art security architecture principles
(present already in a few open source solutions [10, 22]), the support of
the high level security constraints as defined in 1.1, as well as industrial
and maintenance lifecycle processes.

14 Commercial off-the-shelf
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Also, in order to avoid some traps we may encounter during a new
design, the architecture and implementation of Outpost OS is undergoing
a continuous review of our security team for both logical and hardware
attack paths on the MCUs we are using. This includes external logical
attack paths, as well as state-of-the-art hardware based attack paths
(non-invasive and invasive; e.g. power supply, electromagnetic, and laser
perturbations).

The remaining of this article explains more in depth what is Outpost
OS. In Section 2, we describe the general concept of Outpost OS, starting
with how we defined the global architecture and build system in order to
achieve our high robustness and security level requirements 1-2, as well as
industrial requirements 3-8. We then present in more details the overall
security architecture, explaining the various security considerations that
have been integrated to the OS in order to respond to the security threats
considered in Section 1.1 and requirements 1 and 10.

In Section 3 we then walk through our first concrete use case initially
described in [24], showing how Outpost OS responds to our needs for a
secure deported UI. We conclude with the current development state of
the OS, and the next planned features.

2 OutpostOS: a versatile and secure OS for small

embedded systems

2.1 Design and concepts

From a fully specified build model. . . In order to ensure C and Rust
hybrid build, efficient SDK delivery, build manifest and license manage-
ment, Outpost OS is based on Meson [32] as build system and Kconfig [21]
as configuration system. Subcomponents can also use CMake or Cargo for
example, while their configuration is still based on Kconfig. Some build
system restrictions have been set to allow automatic generation of firmware
manifest files. Such files allow to deliver a SBOM and software CPE upon
each firmware delivery time, providing a complete software traceability.
They also allow SDK-based independent configuration (Kconfig-based),
build and delivery.

The Outpost Operating system and tooling is also considered, in terms
of licensing, in order to supports:

— Closed source applications, through the usual dual-licensing model
that include BSD license family in userspace.

— Open-source applications using the (L)GPL licenses family with
the same dual licensing pattern.
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— Closed source projects (such as military or other specific domains),
through the usage of dual licensing and Apache 2.0 license at kernel
level.

— Applications and kernel are never linked together, keeping potential
heterogeneous license model feasible at project level.

Fig. 3. Outpost OS Integrator’s kit

While the Outpost OS is natively designed in order to be decomposed in
a Software Development Kit (SDK) and an Integration Kit (IK), multiple
additional development considerations have been taken. First it has been
decided that any library, driver or application is an independent component
which can be built independently. Libraries, like drivers, can be reused in
multiple projects, using multiple boards, with the very same VCS 15 tag
if needed. Secondly including prebuilt objects, like library binaries (for
example in the case of NDA 16 restrictions) is also allowed.

These environments are described in Figure 3 and 4. All this allows to
support Requirements 5 and 9.

Outpost OS applications, which are implemented using the Outpost
SDK, are defined as services that can be either hardware-relative (inter-
acting directly with a hardware peripheral) or being a portable business
service (value added algorithm or function without direct hardware de-
pendency).

In the first case, the application needs inputs from the project inte-
gration configuration to be properly configured. This typically includes
peripheral pin-muxing configuration, mapping, and so on.

15 Version Control System
16 Non-Disclosure Agreement
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Fig. 4. Outpost OS Software development kit

In the later case, applications can be included in the Outpost IK
as binary components, allowing prebuilt services and NDA restriction
compliance for value added algorithms if needed.

Figure 5 points the different application types and the way they are
used in Outpost.

Fig. 5. Outpost application families

Such a paradigm is highly impacting on the overall OS build system
security. To achieve that, Outpost IK voluntary delivers three independent
binary blocks:

— Applications binary blobs
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— Kernel binary blob, containing Outpost micro-kernel, denoted Sen-
try

— Applications meta-information binary table

At application build time, the SDK always delivers a relocatable ELF
binary hosting both executable content and all required meta-information
with a GPG-signed authentication mechanism.

In the case of relocatable ELF binary, Meta-information signing works
in the same way as the Debian package signing model used in dsc and
changes files [2, 9]. In Outpost though, metadata are stored in the .note

section of the ELF instead of a separated file, in a similar way Linux does
for signed external modules [1]. Nevertheless, these fields are not run-time
checked (like Linux does) but project integration time checked.

On the other hand, dist packages and VCS tags being standard delivery
formats, these last ones, containing reproducible sources, delivers all the
required configuration to guarantee a reproducible build. The Dist package
also delivers a GPG-signed manifest in order to authenticate the developer,
while VCS sources use the standard VCS GPG-based authentication
scheme.

Such meta-information generation is a production of the SDK and
complies with SystemD package notes specification 17 [38], and is used as
an input by the IK (Integrator’s Toolkit) to rebuild source application
for dist or VCS deliveries, generate a valid layout for the target, and to
forge the firmware application meta-information binary table. This table is
then always signed by the project’s integrator’s key, and is authenticated
at runtime, as explained later, in Section 2.3. Figure 7 describes the
way metadata is included in binary deliveries, while source deliveries are
equivalent GPG-authenticated JSON files. Figure 6 describes the overall
authentication sequence.

To achieve that in the IK, input binary applications authentication is
validated against the project GPG repository, in order to authenticate the
developer. This step also validates the relocatable binary integrity, using
the GPG-signed hashes fields in the generated metadata.

It is to note that the IK is also responsible for validating that the SDK
used comply with the current project ABI, using the SDK version set in
the metadata.

In SDK-based application build, the application metadata also hold
generic, application-hosted information. In order to produce the final ELF
file with final metadata, some will be superseded by the project integrator

17 Package metadata requires ‘–package-metadata‘ linker flags
linker required version: bfd, gold ≥ 2.39, mold ≥ 1.3.0, lld ≥ 15.0
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in order to correspond to the project configuration, while others will be
kept.

Typically, superseded fields are the one that impact the overall project
integration, such as application priority or quantum, while application-
local fields such as owned configuration, stack or heap size are kept.

The result of such a process enables:

— authenticated relocatable pre-built ELF file with developer’s meta-
data, signed by the developer’s GPG key

— authenticated final ELF file with integrator superseded metadata,
signed by the integrator’s key

— source-based deliveries, authenticated through VCS developer’s
GPG signature, producing ELF authenticated with integrator’s
GPG key

To finish, the IK then delivers a Integrator’s key signed SBOM and
build manifest, that ensure traceability for all input artefact references,
being pre-built or not.

At the end, all input artifacts are authenticated, having their integrity
checked by the IK. This makes Requirement 8 also supported by Outpost
OS build system.

Fig. 6. Outpost SDK and IK application authentication process using GPGl

Based on the ELF integrator’s signed metadata and sections informa-
tion, the meta-information table is forged. This table is a binary blob that
is read by the kernel at startup.
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Fig. 7. Outpost application metadata forge and authentication model

Its structure is strictly defined using JSON schemas that describes
each field type and field order. To ensure valid compliance to the current
kernel ABI, the kernel is delivered with associated tooling and schemas as
IK inputs, allowing validation of ABI compliance.

. . . with portability and maintainability in mind. . . To avoid any
MCU-specific or project specific content in drivers, kernel or other OS
components, the platform specification uses the standard Open-Firmware
device-tree source [28] format. In Outpost OS though device-trees are not
compiled to be included at runtime, but instead are used to generate
source files with all device-trees information, similarly to what Zephyr [34]
does. This allows to support device-tree based configuration while keeping
a small target footprint.

Drivers implementations can hold their own device-tree file(s), which
can be overloaded at project integration time if needed. It enables an
easy and efficient way to allow both autonomous and project-based driver
built using the same VCS tag, with the device-tree passed as an input
parameter.

In order to deliver to the application developer an easy-to-use build
environment, Outpost OS permits the usage of a fully independent SDK
that does not require either the source of Sentry micro-kernel or others
applications. Thanks to the usage of POSIX API, the C application
business logic can be easily unit tested natively on the build host, while
Rust code can be easily checked with Clippy [27]. This allows the usage
of multiple independent project integration environments, for multiple
product(s).
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The Outpost SDK aims to delivers all the required tooling to ensure
ABI compliance checking for binary deliveries. It is done by including
various information on the SDK version used in the application metadata,
which can be checked at integration time, with respect for the semantic
versioning principles [19].

. . . down to the product deployment and lifecycle The Outpost OS
allows the usage of business-function centric applications. They could be
separated into micro-services [39,44] in order to separate various hardware
backends, such as communication buses, cryptographic backend and so on.
This is done naturally by creating small tasks, each one corresponding to a
given application, that are strictly separated in terms of memory using the
MPU, and delivering higher level interfaces to others. Of course, such a
paradigm is not always applicable at its full extent due to the constrained
footprint and performances.

Spatial and temporal isolation is also considered between task sets
as in next releases, through the already considered notion of task do-
mains, allowing hierarchical scheduling policy (scheduling the sets with
differentiated scheduler) for strictly separated tasks sets.

It is to note that, by new, the kernel scheduling policy is based on a
Round-Robin multi-queues with fixed priority and quantum management.
Nevetheless, the scheduling model is built to support easy scheduling
substitution, allowing, for example, RM 18 or TDM 19 schedulers. Although,
the overall real-time compliance consideration is not, at this step of the
Operating System core functions implementation, considered as a high
priority feature.

To draw near such a design in a performant enough manner, the
Outpost API must be efficient and allow efficient application scheduling
and optimized memory footprint. This is why performance, deployment
and product lifecycle have been dully considered at each stage of the
Outpost OS specification:

1. The Sentry kernel: Upon startup, the Sentry micro-kernel has no
idea of the list of applications that will be executed on top of it.
It will discover the applications list through a strict parsing of
a dedicated area containing the metadata of all the applications
present. A maximum threshold is defined in order to ensure a
strictly bounded maximum number of applications (and thus size
of associated dedicated area).

18 Rate Monotonic scheduling
19 Time division Multiplexing scheduling
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Sentry micro-kernel is quite similar to the EwoK kernel [10], in
terms of UAPI, but several modifications and enhancements have
been added:

— Shared memory management, with ownership and permissions
management

— Support of signals
— Enhanced one-copy IPC implementation
— Enhanced single call burst-compliant user ISR support
— Enhanced scheduler with dual priorities and quantum support
— Support of MCU low power modes
— Dedicated API for core-controlled events, allowing support of

attack detection and post-mortem usage

Its implementation, at the time of this article, is made in a hybrid
C and Rust implementation, including some formal proof on some
part of the C code. The whole syscalls gate and UAPI library being
written in Rust.

2. List of Applications Metadata: The applications metadata list is
defined as a table. Each entry contains a pointer to a dedicated
area placed at after the binary of each application:

— A dedicated 64 bits magic, specific to the current product
— Kernel ABI related versioning information, ensuring that next

fields are properly parsed
— All application-related information and configuration (capabili-

ties, layout, scheduling quantum, resources such as peripherals
and shared memory blocks. . . )

— A SHA256 hash enforcing integrity of all application binary
part (text, data, rodata)

— A SHA256 hash enforcing integrity of all application debug
information

— A GPG signature on all the dedicated area contents above,
enforcing the authenticity of all application binaries, information
and configuration data.

The public key used to verify the GPG signature above is gen-
erated by the IK tools for each Outpost OS build. It is for now,
included in the binary of Sentry micro-kernel itself (the integrity
and authenticity of the Sentry micro-kernel being enforced by the
MCU Secure Boot). We may as part of future work support other
authentication schemes and IK tools keys integration in binaries.
The applications binaries being placed in memory by the IK tool,
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they must be compiled either in PIE 20 mode (application metadata
having a field for referencing a GOT 21) or partially linked position
dependent executable as described in Section 2.2.

3. The applications: Each application is a binary blob that is memory-
mapped by the Outpost IK at a valid position, in association
with a correct metadata information in the metadata list. By now,
upgrading an application requires the IK to re-generate an up to
date memory placement and thus a new firmware image.

As part of future work, application update could be either done
on-place, using free space, or dual-slotting mechanism. This will
allow the usage of resilient upgrade methods in MCUs that do not
support several flash banks, and can be used for increasing the
availability of flash memory in such MCUs.

By now, the metadata list is not duplicated using memory slotting
but it can be considered as part of future work.

There are two specific limitations to application positioning:

— the memory protection unit mapping constraints
— the non-volatile memory structure (usually sectors) when delta-

upgrade is required

MPU regions constraints may vary from one MCU to another [4,5].
Such placement constraint is under the control of the Outpost IK,
and can be considered with specific padding, alignment and slotting
support to allow efficient delta upgrade management if needed.
While no collision due to high increasing of a specific application
happen, only the new application blob and the associated metadata
need to be deployed. This should be the case for minor upgrades
while major would require a full upgrade, in the very same way
other OSes do [45].

In our use cases, the number of concurrent applications on the
target is small enough to allow a smart enough layouting that
resolve both constraints. Such a number is considered, for our
given integration project, between 6 and 16 separated applications
depending on the various products.

20 Position Independent Executable
21 Global Offset Table
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2.2 Application build and link time considerations

Prerequisite The IK is written in Python 22 and uses The Meson build
system 23 and Ninja as build backend. The required C language revision
is, at least C11 with a linker with package notes support [38].

As written earlier, application may be in position dependent or position
independent executable. According to build mode, the application upgrade
capabilities may be restricted. For instance, a per application upgrade
model requires position independent. By now, memory placement and
relocation are done by IK at integration time. Note that in the following
description applies to the use case target architecture (Armv8M-Mainline)
and GCC suite. In both case there is currently no support for dynamic
linkage and thus shared objects.

Static Position Independent Executable (PIE): In PIE mode, the
build flow perform by IK is the following:

— Application build in PIE
— Firmware memory layout/application memory placement
— Application relocation
— Firmware image generation
In this mode, data address is fetch from a GOT which contains data

absolute addresses, only the offset in the table is known at application
build time.

Application must be build with GCC flags ‘–single-pic-base‘ and ‘–no-
pic-data-is-text-relative‘ as data memory relative placement compare to
text is not known at application build. Those flags will generate code that
complies with EABI by using ‘r9‘ register as global data offset register [6].
At link time, ‘-static-pie‘ flag must be used this is expanded to ‘-static -pie
–no-dynamic-linker‘ linker flags by GCC [23]. Those link flags tell linker to
not produce any dynamic relocation section and all data only requires the
GOT to be patched and thus, a dynamic linker at runtime is not needed.

In the next build step, after applications memory placement, the IK
will patch application GOT entries with the right data addresses and
loadable sections LMA 24/VMA 25 are updated. At runtime, the initial
task frame is initialized with GOT address.

For future work, in order to support per application upgrade, GOT
might be fixed up at runtime.

22 Python ≥ 3.10
23 Meson ≥ 1.4.0
24 Load Memory Address
25 Virtual Memory Address
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Static position dependent executable: In noPIE mode, the build
flow perform by IK is the following:

— Application build and partially linked
— Firmware memory layout/application memory placement
— Final, per application, linker script generation based on memory

placement
— Application linkage pass.
— Firmware image generation

In noPIE build mode, application can’t be fully linked as the generated
code is position dependent. Thus application must be partially linked
before memory placement (e.g. GCC ‘-r‘ link flags). After memory place-
ment, a dedicated, per application, linker script is generated all definitive
LMA/VMA for text and data section and then the application is linked
using only the partially linked elf as input and the generated linker script.

Note that this build mode does not allow per application upgrade but
only whole firmware image upgrade.

2.3 Run-time security considerations

The Outpost OS security model has been considered over the overall
lifecycle, starting with the components build and delivery time down to
the target install, upgrade, repair and destruction time.

For the sake of simplicity, all the security considerations will not be
presented in this single paper, as it would be too long to describe. Although,
we try to focus on the core security concepts.

To start with, the micro-kernel based architecture has been defined as
the initial OS usual best practice. Indeed, such architecture allows multiple
efficient security considerations, such as supervisor code strict analysis
and attack surface reduction [25, 31]. It also allows to support separation
of concerns principle, that has already been demonstrated in both safety
and security critical industrial systems [13]. To this initial architectural
requirements, a set of runtime defense-in-depth considerations have also
been included to respond to our typical technical threats scenarios in
an efficient manner, complexifying and delaying as much as possible
considered threats.

As a consequence, besides the usual security best practices (stack
smashing protection (SSP), MPU-enforced W⊕X, strict and controlled
application and kernel partitioning), some others defense-in-depth are also
considered, such as potential shadow stacking support such as described
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in [17], CFI,26 or active software or hardware corruption detection, in
order to answer security requirements defined in Section 1.1.

Moreover, the kernel is implemented with specific fault-injection pro-
tection schemes (hamming distance, no comparison to 0, critical checks
duplication, etc.).

Nevertheless, it must not be forgotten that security is not the main
target of the OS. As a consequence, we have defined, in a similar way to
networking concepts [40] the notions of slow path and fast path at syscall
level.

This has been achieved by defining a performance level consideration
for each syscall, based on the usual, secure and performant embedded
usage of devices. In our model, we consider that:

— all system wide events, external I/O and device manipulation should
comply with high performances, allowing as small as possible busi-
ness logic latency, including various timing consideration such as
graphical VSYNC/VBLANK periods, network stacks performances
or all DMA-related usage

— all platform initialization API (platform discovering, opaques dis-
covering) can has its performances reduced

— power management support such as entering or leaving hardware
stop-modes is also not considered as time critical

In the same time, syscall are considered as Finite State Machines. The
FSM states are associated to a given manager execution, a syscall being a
consecutive call to multiple managers (task, memory, etc.) that interact
to deliver the corresponding service. Managers API can be called directly
or through managers inter-dependencies.

The global syscalls repartition and design is then considered in the
way defined in 8.

With such a model properly defined, it is possible to trigger differenti-
ated security functions, so that slow paths and fast path can hold integrity
checks with consideration for the overall system performances.

In one hand, as performances degradation associated to slow paths
checks is accepted, this allows us to include more efficient security consid-
erations for various logical and hardware exploitations:

— moving from a state to another being predictable, a CFI based
on double sequence calculation is added, detecting any abnormal
transition.

26 Control Flow Integrity
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Fig. 8. Outpost syscall slow and fast paths repartition model

— hardware checks can be added, once per syscall execution, to
detect potential hardware IP state corruption (MPU state, NVIC
configuration, etc.).

In the other hand, fast path syscalls can’t have their execution time
such increased. The security checks is then reduced:

— the overall syscall duration in cycles is calculated for a given sub-
architecture, in cycles.

— as syscalls are unpreemptible, the syscall execution time is measured
down to the potential preemption sequence (for asynchronous
syscall) or to the handler return (for synchronous syscalls) to
detect any abnormal behavior (too short or too long), based on all
execution paths measurement.

— instead of an effective CFI, a compile-time pattern forge for main
functions is made and checked by callee. The check is a high perfor-
mance numerical comparison. patterns vary with new releases, as
using the commit hash as input seed, with respect for reproductible
build.

In micro-kernel based systems, the logical attack surface is hosted
by user-space applications, starting with those which communicate with
external environment, as a consequence of Threat 1. To increase the overall
system protection, the Sentry kernel runtime security model is based on
multiple defense-in-depth mechanisms to reduce such an attack path im-
pact. To start with, the kernel code as a particular kernelspace/userspace
way to communicate. The kernel handlers always start with a reconfigu-
ration of the application memory region. The goal here is to reduce the
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accessible application memory from the kernel to a small, fixed, dedicated
memory space denoted svc exchange area, through which applications
and kernel communicate. The main impacts are:

— the svc exchange area is a build-time fixed, canary protected,
subsection of the application memory, mapped at the beginning
of the application memory layout, allowing fast and easy region
resizing and bound-checking

— kernel syscall gate never manipulates pointers. The UAPI imple-
mentation is responsible for fulfilling this zone before calling the
syscall handler, and for getting kernel result(s) back from it

— the area canary is updated each time a slow-path syscall is executed,
and checked each time the syscall gate is called

— Sentry kernel code is unable to access application business data.
Only this exchange zone is kept mapped during kernel execution
context

To support all these defense-in-depth mechanisms, a set of security
events has been defined, as well as a storing mechanism in a dedicated
area of the volatile memory, with write before reset capability. The goal is
to be able to react to such consecutive events as per a security policy, as
for example erasing all assets and generating a report for auditing.

3 Outpost OS in deported-UI use case

3.1 Project specific construct

To answer to the project-specific architecture of our deported UI, a
set of applications has been defined, as described in Figure 9:

— User Interface Management: this application is responsible for
the View part of the standard MVC [14] 27 pattern for graphical
interfaces. While this application uses OS generic components
(mostly graphic related peripheral drivers), it also includes some
OSS software notably for the graphical library, such as LVGL [37].
The application main loop is a product-specific component.

— SE Communication Gate: this application is the deported UI en-
trypoint from the eSE. It is responsible for handling the link and
transport layers for all the exchanges performed with the eSE. It
notably includes the usual flow control management and service
identification between peers. Communication security (authentica-
tion, integrity, confidentiality) is supported in interaction with the

27 Model-View-Controller
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Key Storage and Management Service. The physical layer for com-
munication is implemented using OS generic drivers (SPI, I2C. . . ).
The application itself is not defined as a generic remote gateway
service but may, in the future, be defined as such.

— Key Storage and Management Service: This generic service is re-
sponsible for storing and manipulating the local cryptographic
assets to support cryptography-relative functions, such as authen-
tication, signature and encryption/decryption. It can be addressed
using bare shared memories, signals or IPC in our first implemen-
tation (but we plan to use higher level API later on). The shared
memory ownership and access request handling is explained in this
section.

— OS upgrade service: This generic service is the foundation of the OS
security. It is uncorrelated from the way the upgrade is delivered,
but implies some specific security considerations, including chunk
encryption and global upgrade content authentication (for example
using HMAC). This service relies on the Key Storage and Manage-
ment Service for securing the keys used for the upgrade process. In
its initial implementation, only a whole firmware upgrade will be
supported, based on dual flash banking A/B.

Fig. 9. Outpost OS-based deported UI use case
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Listing 1: deported UI sample project configuration

1 name = 'extUI Project'

2 license = 'Apache-2.0'

3 license_file = 'LICENSE.txt'

4 devicetree = 'product_board_ref0.dts'

5 [sentry]

6 url = 'git@outpost-repo-url/sentry-kernel.git'

7 revision = 'v0.1'

8 method = 'git'

9 config_file = 'configs/project_depUI_debug_defconfig'

10 gpgsig = B9AD793E[...]0F6530D5E920F5C65

11 [app.secom]

12 url = 'git@my-repo-url/secom.git'

13 revision = 'v1.3.5'

14 method = 'git'

15 config_file = 'configs/project_depUI_defconfig'

16 gpgsig = 73D1790[...]E3C16097C115470EF8

17 # continuing...

Such a software architecture allows a relative straightforward project
definition thanks to the TOML syntax used by the project integration’s
toolkit, as shown in Listing 1. In Outpost OS, each application local
dependencies, such as user-space drivers, protocol stack and so on, are
under the responsibility of the application build system, and mostly derive
from the config_file line that use the Kconfig language to define the
overall application metadata. In the same time, dependencies are pushed
in the global delivery manifest so that no indirect dependency is lost. In
our implementation, it is done using the meson build system manifest
delivery mechanism.

Next to the project software configuration is also added the project
target board configuration, that holds the board description using the
device-tree syntax (DTS). In our project, we use VCS-based applica-
tions integration, where the project’s device-tree overloads the project
configuration.

3.2 Configuring user-space drivers and communication

enditemi

In Figure 9, user-space applications can use and own several MCU
peripherals. MCU peripheral drivers are in user-space (excepted the ones
managed by Sentry kernel at system level). It is up to the developer to
provide for each service a dtsi fragment for the configuration of each
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peripheral and to list all enabled peripherals in its package-metadata 2
through the Kconfig-based configuration mechanism.

At integration time, the Outpost IK will check that:

— A peripheral is enabled by exactly only one service
— No enabled peripheral is orphan (i.e. associated neither to the

Sentry kernel nor to a service)

For security and portability reasons, user-space applications cannot
have access at runtime to some peripherals configuration related to MCU
core and managed by Sentry kernel, such as clock configuration or pin-
mux [10,11]. Those are defined in a MCU-based dtsi fragment in a dts file at
project top level. Other less sensitive MCU core peripherals configuration
such as baudrate, clock signal polarity, word size, and so on, are defined in
user-space fragments and can be overridden at project level if needed. For
example a typical MCU dtsi fragment for a SPI bus peripheral description
is shown in Listing 2. The application may there add peripheral specific
configuration (e.g. clock polarity, required by the underlying protocol),
as shown in Listing 3. As a last resort, the project is configuring the pin
used for SPI1 for the board used in the project and can override any other
fields if needed, as shown in Listing 4.

Note that, in order to enforce proper memory isolation, all bus master
(as DMA controllers) are considered as MCU core peripherals and are
under the strict control of the Sentry kernel, in the way EwoK kernel
does [11].

At build time a table of mappable peripherals is built by Outpost IK
with all application enabled peripherals and MCU-specific configuration
if any. At runtime, before its usage, a peripheral must be pre-configured
(it is called ’probing’) and then memory mapped. The Sentry kernel
validates for all operations relative to peripheral management that the
application has the proper ownership and capability compliance. The
peripheral management is done using build-time forged opaque identifiers,
based on the project device-tree peripherals listing. The Sentry kernel is
fully in charge of the probing of each peripheral: setup of the peripheral
clock-tree (as per fragments defined at project top level), setup of required
GPIO pins configuration and muxing, and setup of associated interrupts.
Once the peripheral probing is done, its address range is then added
to the application’s allowed memory layout and the peripheral can be
mapped upon application request with a dedicated syscall. Note that our
implementation is made in a way to prevent that Sentry kernel can never
access peripheral that it does not own itself.
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As each mapped peripheral requires a dedicated MPU region, the
number of peripherals mapped simultaneously at a given time for an
application is limited: it is up to the application to handle peripheral
map/unmap policy in function of its needs at a given time (best security
practice being to have unused peripheral unmapped as soon as unused).

Listing 2: SPI1 MCU definition

1 spi1: spi@40013000 {

2 compatible = "st,stm32-spi";

3 #address-cells = <1>;

4 #size-cells = <0>;

5 reg = <0x40013000 0x400>;

6 clocks = <&rcc STM32_CLOCK_BUS_APB2 0x00001000>;

7 interrupts = <35 5>;

8 status = "disabled";

9 };

Listing 3: SPI1 service definition

1 &spi1 {

2 st,spi-clock-pol-inv;

3 status = "okay";

4 };

Listing 4: SPI1 project definition

1 &spi1 {

2 pinctrl-0 = <&spi1_mosi_gpio>, <&spi1_miso_gpio>;

3 status = "okay";

4 };

In Figure 9, some user-space applications use shared memory in order
to exchange data. Each shared memory resource required by an application
has to be declared in its metadata. Such resource is seen as a peripheral
(aka a ’shared memory block peripheral’) in the device-tree with the
following characteristics:

— They have an unique owner
— They can’t be ’released’, but can be (un)mapped when needed by

the application
— They are mapped read-write
— Synchronization mechanism is left to applications

The shared memory notion in Outpost OS is managed with the princi-
ple of a reserved memory pool at product integration time, as shown in
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Listing 5. This memory pool is initialized by the Sentry kernel at boot
time. An application can always map a shared memory block it owns,
in the very same way a peripheral is mapped, by using a strictly unique
identifier forged at build time. The owning application can also allow the
access of shared memory block it owns to one other application using a
dedicated set of syscalls. The information that an access has been given has
to be managed by application developers using messaging (IPC/Signals)
between applications.

The Outpost IK is in charge of collecting all required shared memory
blocks resources, and to perform various verifications, as notably that
the amount of memory reserved for shared memory is sufficient (avoiding
race condition during runtime), and MPU restrictions. Even if the pool of
all shared memory blocks is built by Outpost IK, and thus fixed before
runtime, the memory base address of each shared memory block is not
known by the application before runtime, as Sentry kernel can perform
some scrambling between blocks to enhance security.

Listing 5: Sentry shared memory pool

1 reserved-memory {

2 #address-cells = <1>;

3 #size-cells = <1>;

4 ranges;

5

6 shared_memory: shm@2001000 {

7 reg = <0x2001000 0x4000>;

8 };

9 };

3.3 Measurements and performances

Our current Outpost OS implementation supports three build modes
with different objectives:

1. Release: Mode for production with debug disabled (no debug related
code included) and all security features activated

2. Debug: Mode for development with some security features deacti-
vated, debug support and log levels added in the OS code

3. KSelfTest: Mode for auto-test with a dedicated user-space applica-
tion for kernel UAPI regression and security testing

As shown in Table 3, our current Outpost OS footprint is quite small
whatever the build mode used.
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Build Mode Release Debug KSelfTest

flash SRAM flash SRAM flash SRAM
kernel 12,064 7,492 18,132 7,917 17,844 7,917
task metadata list (max=4) 800 0 800 0 −

idle (user app) 588 260 588 260 588 260
autotest-for-ktest (user app) − 3,372 4,424

Table 3. Size in bytes of kernel-related components on STM32F4 target

The boot time is around a couple of milliseconds in Release build
mode (without considering standard security checks such as integrity
and potentially authenticity verifications which are independent of OS
implementation). And approximately a hundred times longer in Debug
build mode as shown in table 4. Note that this penalty is due to the time
taken by synchronous logging over UART at 115200 bauds speed.

Build Mode Release Debug⋆

cycles 60,887 11,727,204
milliseconds 1.439 ms 1,407.265 ms

⋆ with synchronous log on uart at 115200 bauds

Table 4. Outpost OS boot time (to first application start) on STM32F401 target

Context switch timing is measured using the sys_yield() use case,
dimensioning the overall UAPI and handler mode traversal, and including
as well the scheduler elect call and internal context switching. Results are
shown in table 5.

MCU STM32F401 STM32F429 STM32U5A5

Architecture ARMv7-M ARMv7-M ARMv8-M
Core Cortex-M4 Cortex-M4 Cortex-M33
Frequency used 84Mhz 144Mhz 140Mhz
DMIPS/Mhz [7] 1.26 1.26 1.57

cycles µs cycles µs cycles µs
context switch⋆†‡ 1,313 15.75 1,313 9.19 1,173 8.37

⋆ build with GCC 12.3, -Os and resp. -mcpu=cortex-m4 and -mcpu=cortex-m33
† mean cycle count over 105 yield syscall
‡ with round robin multi-queues with quantum scheduler policy

Table 5. Outpost OS context switch time on ARMv7-M/ARMv8-M targets
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3.4 Limitation and Future Work

The Outpost OS and its associated ecosystem is still in its early stage
of development, leaving us a huge set of features and improvements we
aim to include at various levels.

At the time of writing this article, the OS already supports two
ARM® architectures: ARMv7-M and ARMv8-M, and multiple STM32-
based MCUs, from high performances (STM32F4xx) to newest low power
ones (STM32U5xx).

Most of described security features are already fully or partially imple-
mented, and designed to be adapted easily to the targeted security level
and the considered threats. One of our upcoming work are features related
to industrial-grade OS, with notably the support for logging in a dedicated
secure storage in NVM 28 critical events, allowing product self-analysis of
its integrity and security state, as well as support of secured post-mortem
checks.

Other core features are also part of our short plans: low power man-
agement, integration with chip secure boot, as well as in-depth security
considerations using in-code counter-measures against faults.

ARMv8-M TrustZone support is also only basically supported: we
consider to fully support it later with all the restrictions associated to
each runtime world [29].

In the meanwhile, we want to offer various C and Rust-based standard
functionality at application level in order to offer to developers what
they expect off the shelves from an OS used as foundation for generic
multipurpose products. We will start with drivers for common MCU
peripherals (using for example Rust traits), and then with support of some
standard protocols and cryptographic stacks.

The DMA controller (DMA2D) used for graphical operation is fully in
user-space application as a first quick implementation of our User Interface
Management application. We are still analyzing how to adapt at best
the syscalls required to guarantee full security properties (as made for
standard DMAs controllers which are master on the bus), while providing
all its capabilities for graphic operations.

We have also in mind some security improvements of the built chain
itself, by including the complete forge of the SDK with the toolchain build
(in the same way as Yocto does). It will make it possible to take advantage
of features such as compiler-level hardening, as the ones provided recently
by AdaCore [18]. We plan also to improve the verification and issuance of

28 Non-Volatile Memory
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cryptographic signatures processes for building the deliverables with the
IK, by leveraging notably the support of other signature methodologies in
addition to the GPG one we support for now.

The post-integration security compliance checker is also an evolution
of the IK we want to work on. The goal here is to provide a security
compliance analysis of a built image to assist the verification of the project
configuration in regards of a given security profile, by providing complete
product integrator’s information and output deliveries metadata in various
formats allowing easy compliance check. This work is still under definition
and not yet bootstrapped, but we are convinced of its added value for
industrial products.

4 Conclusion

In this article, we have presented how we have moved forward from the
requirements of an initial deported User Interface proof of concept towards
an industrial-grade secure OS with a complete dedicated toolchain.

After unsuccessful review of the state of the art, we have specified
functional, security and industrial requirements with scalability and main-
tainability in mind for such an OS for small/medium IoT devices using
MCUs. We have started its implementation, based on micro-kernel ar-
chitecture, on market standard MCU, integrating multiple robustness
and security mechanisms, from the delivery of security model down to
OS runtime security checks, and capable of supporting several languages
for applications developments. We have also worked on the setup of a
toolchain at today’s best standard level, with the configuration and in-
tegration level similar to what is found in Yocto [36] or Buildroot [20]
projects. This toolchain allows one to properly configure, build and deliver
software components and associated bill of material, while supporting
separate developments with proper security and trust.

This OS will be used in Ledger’s future products for supporting a secure
deported UI where a MCU drives high resolution color displays under
control of our eSE (as follow up of previously exposed deported UI use case).
This industrial integration implies further planned improvements such as
upgrade, power-management and high security requirements. Considering
such work may also be of interest for building various industrial products
where high level of security and robustness are required, we aim to share
it with the Open-Source community to make it evolve considering various
other needs and expertise.
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