
ntdissector: a swiss-army knife for your NTDS

files

Mehdi Elyassa and Julien Legras
mehdi.elyassa@synacktiv.com

julien.legras@synacktiv.com

Synacktiv

Abstract. NTDS files are the central databases of Windows Active
Directory environments. They contain secrets and credentials that can
be extracted using miscellaneous offensive public tools. However, their
capabilities often stop at these secrets and credentials but not more. The
ntdissector tool was developed to extract and format all the data of these
NTDS files by using only Python to be platform-agnostic and easily
improved.

1 Introduction

1.1 Context

During an Active Directory password review, we had to output various
statistics across different user populations. In that case, the type of users
was set in the extensionAttribute attribute in the NTDS database. While
we had no problem to extract the LM and NT hashes from the NTDS, we
were forced to use other tools such as go-ese to extract other fields.

The output – JSON files – of the tool was good enough for our needs,
but it was not able to decode many attributes and decrypt anything.

At Synacktiv, we use ldeep on a regular basis to extract LDAP infor-
mation and output them as JSON files. The similarity of the outputs and
the data eventually led us to the following question: is it possible to create
a tool able to output the same data as ldeep but directly from a NTDS
file?

We will explain in this article our journey in developing such a tool.
Some new features introduced after the publication of the two blog posts [2,
3] will also be addressed.

1.2 State of the art

NTDS parsing tools are not new as security auditors need them to
perform various audits such as passwords or permissions reviews. Most



2 ntdissector: a swiss-army knife for your NTDS files

of them are dedicated to a specific type of audit such as pwdump or
secretsdump to extract LM and NT hashes or BTA to audit the permissions.

We initially worked on go-ese to add the missing features but it was
not as easy as we thought. Eventually, we found the dissect project from
Fox-IT: it is developed in Python, it has a dissect.esedb module that can
be used to convert the NTDS records to JSON. At first, it was quite
slow but a good profiling and debugging session resolved the issue. We
eventually made a pull request [1] to serialize ESE objects to Python dict
more efficiently. On a sample NTDS.dit of 1.5GB, the processing time
improved by 10 times (from 40 to 4 minutes).

2 Tool’s capabilities

At first run, the tool builds various cache files to map out the schema,
extract security descriptors, build up links and more broadly speed up any
future execution. Therefore, besides converting records to JSON objects,
the tool resolves ATT column names to their LDAP or CN naming
equivalent. To do so, the Attribute-Name-LDAP and Attribute-Name-CN
attributes of objects from the attributeSchema class are saved into a
dictionnary, which is persisted with the cache.

The tool also parses the link_table to extract the links and backlinks
between objects. Moreover, the hierarchy between objects is processed to
build up distinguished names.

Additionaly, extracting more than just NT and LM hashes was a
major objective behind this project. Our efforts were therefore focused on
extracting most of the secrets stored in the NTDS database in order to
produce a cross-platform tool that can meet many needs. Today, ntdissector
extracts and decrypts the following secrets:

— DPAPI backup keys: the backup key is formatted as a PVK key
and can be directly used by DPAPI tools, such as dpapi.py.

— Supplemental credentials: a structure that contains cryptographic
hashes for the Digest and Kerberos authentication protocols.

— LAPS legacy passwords: plaintext passwords of the local adminis-
trators and their associated expiration time.

— Windows LAPS passwords: also known as LAPSv2.
— Authentication secrets related to incoming and outgoing domain

trusts.



M. Elyassa, J. Legras 3

3 Regular NTDS files

This chapter covers the main technical challenges we faced while
attempting to format the objects and to get rid of the encryption layers
protecting sensitive data.

3.1 DN resolution

As stated earlier, to reproduce the LDAP output, a distinguished
name (DN ) resolution process is implemented in ntdissector. The objects
hierarchy is implemented through two attributes:

— A DNT_col attribute stores a unique ID identifying the object
itself.

— Another PDNT_col attribute holds the parent object’s ID.

Two other attributes hold the information to format the relative
distinguished name (RDN ) of the object:

— A RDNtyp_col attribute contains an ID referencing an at-
tributeSchema object that represents the DN type (CN, OU,
DC . . . ).

— Another RDN attribute contains the name of the object.
These attributes combined to some internal ID resolutions allow for-

matting the RDN with the {RDNtyp_col}={RDN} format.
Regarding the full DN, it is constructed recursively based on the tree

structure as follows:

1 {RDNtyp_col}={RDN},{RDNtyp_col N-1}={RDN N-1},{RDNtyp_col N-2}={RDN N-2} ...

2 # CN=User1,OU=Users,DC=DOMAIN,DC=LOCAL

3.2 LAPS v2

In early 2023, Microsoft released a new version of the LAPS solution
named Windows LAPS [12]. Among the significant changes introduced by
this new version, password encryption is now supported to avoid unsecure
storage as plaintext in the Active Directory. It mainly relies on the DPAPI-
NG mechanism and AES-256. Consequently, the following attributes are

introduced in the AD schema by Windows LAPS:
— msLAPS-Password
— msLAPS-EncryptedPassword
— msLAPS-EncryptedPasswordHistory
— msLAPS-EncryptedDSRMPassword



4 ntdissector: a swiss-army knife for your NTDS files

— msLAPS-EncryptedDSRMPasswordHistory

If encryption is disabled, the msLAPS-Password attribute of the com-
puter object stores a JSON object such as:

1 {

2 "n":"Administrator" , # Name of the managed local account

3 "t":"1d91d7c83e34480" , # UTC password update timestamp

4 "p":"<password>" # Plaintext password

5 }

Otherwise, the content of the msLAPS-Encrypted* attributes is
a blob which uses the structure format defined for the ms-LAPS-
EncryptedPassword [4] attribute. The latter contains the JSON described
above encrypted with a Content Encryption Key (CEK) protected via
the MS-GKDI [6] protocol.

Such protocol, relies on a Key Distribution Services (KDS) Root Key [5]
to derive the Key Encryption Key (KEK ) used to encrypt the CEK.

Since the KDS Root Keys are stored in the NTDS database in msKds-
ProvRootKey objects, ntdissector implements an offline version of the
MS-GKDI protocol in order to compute the KEK for any given LAPS
encrypted password.

1 // msKds-ProvRootKey.json

2 {

3 "cn": "0ff68468-a6bf-086c-5c23-2b42fcecb555" ,

4 [...]

5 "msKds-KDFAlgorithmID": "SP800_108_CTR_HMAC" ,

6 "msKds-KDFParam": "<HEX>" ,

7 "msKds-PrivateKeyLength": 512,

8 "msKds-PublicKeyLength": 2048,

9 "msKds-RootKeyData": "<HEX>" ,

10 "msKds-SecretAgreementAlgorithmID": "DH" ,

11 "msKds-SecretAgreementParam": "<HEX>" ,

12 [...]

13 "objectCategory":

"CN=ms-Kds-Prov-RootKey,CN=Schema,CN=Configuration,DC=.." ,→֒

14 "objectClass": [

15 "msKds-ProvRootKey" ,

16 "top"

17 ],

18 }

Figure 1 represents the decryption process, which is broadly detailed
in our blog post [2].



M. Elyassa, J. Legras 5

F
ig

.
1

.
L

A
P

S
v
2

p
a
ss

w
o
rd

d
ec

ry
p

ti
o
n

p
ro

ce
ss

.



6 ntdissector: a swiss-army knife for your NTDS files

3.3 Trusts

Secrets related to domains trusted by or trusting the local do-
main are also extracted and formatted by the tool. In particular,
the trustAuthIncoming and trustAuthOutgoing secret attributes defined
in objects of the trustedDomain class are processed. They contain
LSAPR_AUTH_INFORMATION [10] structures that hold authenti-
cation information either as an RC4 key or a cleartext password, which
can be used to compute RC4 or legacy DES keys.

4 ADAM NTDS files

During the development of ntdissector, we took into consideration a
particular variant of NTDS databases dubbed ADAM. AD Lightweight
Directory Services rely on this format which presents some particularities
that caused known tools to fail parsing it.

The first difference resides in the data encryption mechanism. Both
formats protect the password hashes and various sensitive information
with a Password Encryption Key (PEK). The latter is encrypted with a
SysKey before being stored in the database.

While a classic NTDS database derives the SysKey from four separate
keys (JD, Skew1, GBG and Data) stored in the SYSTEM hive, the ADAM
database, being a standalone instance, relies on a BootKey instead, which
is assembled from 2 values stored directly in two distinct records: the
rootPekList as an attribute of the top object class and the schemaPekList
in the dMD object.

1 $ jq '{name, pekList}' ntdissector/out/{top,dMD}.json

2 { "name": "$ROOT\_OBJECT$" , "pekList": "<HEX>" }

3 { "name": "Schema" , "pekList": "<HEX>" }

The permutations required to compute the BootKey are as follows:

1 root_permutation = [2, 4, 25, 9, 7, 27, 5, 11]

2 schema_permutation = [37, 2, 17, 36, 20, 11, 22, 7]

3 bootKey = b "" .join([rootPekList[i] for i in root_permutation]+

[schemaPekList[i] for i in schema_permutation])→֒

Once the key is computed, the credentials can be decrypted by reusing
the original decryption routine without the 3DES decryption step. Indeed,
the ADAM format relies on a single RC4 encryption layer.



M. Elyassa, J. Legras 7

Fig. 2. ADAM NTDS secrets decryption process.

One last difference resides in the kind of structure stored in the
supplementalCredentials attribute. In a standard NTDS.dit database, this
attribute holds the USER_PROPERTIES [8] structure. Among other
secrets, this structure stores the Kerberos long term keys.

However, in ADAM files, a WDIGEST_CREDENTIALS [9] structure
is stored in that attribute. In this case, it has little interest since it only
seems to store WDigest credentials.

5 ntdissector toolset

One of the main goals of ntdissector was to provide readable input for
other tools. This section describes what can be done with the output of
ntdissector and the tools it offers.

5.1 secretsdump

The script user_to_secretsdump.py provides a simple conversion of
JSON files to the usual secretsdump output:

1 <username>:<rid>:<LM>:<NT>::: (pwdLastSet=<date>) (status=<status>)

2 <username>_historyX:<rid>:<LM>:<NT>:::



8 ntdissector: a swiss-army knife for your NTDS files

5.2 Bloodhound

Of course, ingesting the data into Bloodhound was on the to-do list.
A simple converter would be useful for both pentesters who find old
NTDS.dit files and for forensic analysis.

The script convert_to_bloodhound.py implements such transformation.
The documentation of Bloodhound is not up-to-date, so most of the work
has been inspired by BloodHound.py [11] and SharpHound [13].

6 Remaining technical challenges

6.1 Compression

Though dissect.esedb implements the core of the ESE parsing features,
it is not possible at the time of writing to easily decompress some ESE
fields that are compressed using the XPRESS10 algorithm. Microsoft
implemented this algorithm for their cloud services and they developed
their own hardware to improve the decompression in the infrastructure [7].

Unfortunately, the available code cannot be used as-is with Python.
ntdissector ignores these fields for the moment, contribution to dissect.esedb
are welcome to add the support of this compression algorithm.

7 Conclusion

The open source tool ntdissector was published at https://github.

com/synacktiv/ntdissector.

References

1. Julien Legras Mehdi Elyassa. Add functions to efficiently serialize records, 2023.
https://github.com/fox-it/dissect.esedb/pull/24

2. Julien Legras Mehdi Elyassa. Introducing ntdissector, a swiss army knife for your
ntds.dit files, 2023.
https://www.synacktiv.com/publications/introducing-ntdissector-a-

swiss-army-knife-for-your-ntdsdit-files

3. Julien Legras Mehdi Elyassa. Using ntdissector to extract secrets from adam ntds
files, 2023.
https://www.synacktiv.com/en/publications/using-ntdissector-to-

extract-secrets-from-adam-ntds-files

4. Microsoft. [MS-ADA2]: Attribute ms-LAPS-EncryptedPassword, 2021.
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-

ada2/b6ea7b78-64da-48d3-87cb-2cff378e4597

https://github.com/synacktiv/ntdissector
https://github.com/synacktiv/ntdissector
https://github.com/fox-it/dissect.esedb/pull/24
https://www.synacktiv.com/publications/introducing-ntdissector-a-swiss-army-knife-for-your-ntdsdit-files
https://www.synacktiv.com/publications/introducing-ntdissector-a-swiss-army-knife-for-your-ntdsdit-files
https://www.synacktiv.com/en/publications/using-ntdissector-to-extract-secrets-from-adam-ntds-files
https://www.synacktiv.com/en/publications/using-ntdissector-to-extract-secrets-from-adam-ntds-files
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-ada2/b6ea7b78-64da-48d3-87cb-2cff378e4597
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-ada2/b6ea7b78-64da-48d3-87cb-2cff378e4597


M. Elyassa, J. Legras 9

5. Microsoft. [MS-GKDI]: Creating a New Root Key, 2021.
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-

gkdi/017840c0-2aca-4abe-9ef5-979046e8a198

6. Microsoft. [MS-GKDI]: Group Key Distribution Protocol, 2021.
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-

gkdi/943dd4f6-6b80-4a66-8594-80df6d2aad0a

7. Microsoft. Project zipline, 2021.
https://github.com/opencomputeproject/Project-Zipline

8. Microsoft. [MS-SAMR]: supplementalCredentials, 2022.
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-

samr/0705f888-62e1-4a4c-bac0-b4d427f396f8

9. Microsoft. [MS-SAMR]: WDIGEST_CREDENTIALS Construction, 2022.
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-

samr/511f65e8-3dbe-4377-b657-30b47dc4f26c

10. Microsoft. [MS-ADTS]: LSAPR_AUTH_INFORMATION, 2024.
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-

adts/dfe16abb-4dfb-402d-bc54-84fcc9932fad

11. Dirk-Jan Mollema. Bloodhound.py.
https://github.com/dirkjanm/BloodHound.py

12. Jay Simmons. By popular demand: Windows LAPS available now!, 2023.
https://techcommunity.microsoft.com/t5/windows-it-pro-blog/by-

popular-demand-windows-laps-available-now/bc-p/3805787

13. BloodHound team. Sharphound.
https://github.com/BloodHoundAD/SharpHound

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gkdi/017840c0-2aca-4abe-9ef5-979046e8a198
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gkdi/017840c0-2aca-4abe-9ef5-979046e8a198
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gkdi/943dd4f6-6b80-4a66-8594-80df6d2aad0a
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gkdi/943dd4f6-6b80-4a66-8594-80df6d2aad0a
https://github.com/opencomputeproject/Project-Zipline
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-samr/0705f888-62e1-4a4c-bac0-b4d427f396f8
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-samr/0705f888-62e1-4a4c-bac0-b4d427f396f8
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-samr/511f65e8-3dbe-4377-b657-30b47dc4f26c
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-samr/511f65e8-3dbe-4377-b657-30b47dc4f26c
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/dfe16abb-4dfb-402d-bc54-84fcc9932fad
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-adts/dfe16abb-4dfb-402d-bc54-84fcc9932fad
https://github.com/dirkjanm/BloodHound.py
https://techcommunity.microsoft.com/t5/windows-it-pro-blog/by-popular-demand-windows-laps-available-now/bc-p/3805787
https://techcommunity.microsoft.com/t5/windows-it-pro-blog/by-popular-demand-windows-laps-available-now/bc-p/3805787
https://github.com/BloodHoundAD/SharpHound

	ntdissector: a swiss-army knife for your NTDS files

