
Landlock: From a security mechanism idea to a widely

available implementation

A picture containing text, clipart

Description automatically generated

2024-06-06

Mickaël Salaün – Linux kernel maintainer

SSTIC

https://creativecommons.org/licenses/by-sa/4.0/
https://digikod.net/

Agenda

1. Problem statement

2. Security sandboxing

3. Landlock properties

4. Landlock interface

5. Upstreaming and adoption

Problem statement

Goal: protect data

https://xkcd.com/1200

https://xkcd.com/1200

Pragmatic

statements

1. An innocuous and trusted process can

become malicious during its lifetime

because of bugs exploited by

attackers.

2. There are multiple and different levels

of trust and different consequences

in case of a breach: system, user, app

data…

Attack cost

Security sandboxing

What is

sandboxing?

“A restricted, controlled execution

environment that prevents potentially

malicious software [...] from accessing any

system resources except those for which

the software is authorized.”

Tailored and

embedded

security policy

Developers are in the best position to

reason about the required accesses

according to legitimate behaviors:

• Application semantics

• Static and dynamic configuration

• Interactions

Dynamic policy

composition

Safe security

mechanism

Principle of least privilege

• No privileged accounts or services

• No SUID binaries

Innocuous access control

• Only increase restrictions

Protecting against bypasses

• Each process should be protected from

less-privileged ones

Non-Linux

systems

Main sandbox mechanisms:

• XNU Sandbox (iOS)

• Pledge and Unveil (OpenBSD)

• Capsicum (FreeBSD)

• AppContainer (Windows)

Candidates for a sandboxing mechanism

Performance Fine-grained control Embedded policy Unprivileged use

Virtual Machine

SELinux

namespaces

seccomp

Landlock

Yes, compared to others

No, compared to others

In some way, but with limitations

Landlock properties

Use case #1 Untrusted applications: protect from

potentially malicious third-party code.

Candidates:

• Container runtimes

• Init systems

Use case #2 Exploitable bugs in trusted

applications: protect from vulnerable

code maintained by developers.

Candidates:

• Parsers: archive tools, file format

conversion, renderers…

• Web browsers

• Network and system services

Landlock

empowers

developers

New unprivileged security layers

Lockless concurrent development:

avoid policy management bottleneck

Set of small policies: easier to maintain

and audit

Testable with a CI and synchronized with

app semantic: stable

How Landlock

works?

Restrict ambient rights according to the

kernel semantic (e.g., global filesystem

access) for a set of processes, thanks to 3

dedicated syscalls.

Security policies are inherited by all new

children processes.

A one-way set of restrictions: cannot be

disabled once enabled.

Current access

control

Implicit restrictions

• Process impersonation (e.g., ptrace)

• Filesystem topology changes (e.g.,

mounts)

Explicit access rights

• Filesystem

• Networking

Current

filesystem

access rights

• Execute, read or write to a file

• List a directory or remove files

• Create files according to their type

• Rename or link files

• IOCTL commands to devices

Current

networking

access rights

• Connect to a TCP port

• Bind to a TCP port

Landlock interface

Step 1: Check backward compatibility

int abi = landlock_create_ruleset(NULL, 0, LANDLOCK_CREATE_RULESET_VERSION);

if (abi < 0)
 return 0;

Step 2: Create a ruleset

int ruleset_fd;
struct landlock_ruleset_attr ruleset_attr = {
 .handled_access_fs =
 LANDLOCK_ACCESS_FS_EXECUTE |
 LANDLOCK_ACCESS_FS_WRITE_FILE |
 […]
 LANDLOCK_ACCESS_FS_MAKE_REG,
};

ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0);
if (ruleset_fd < 0)
 error_exit("Failed to create a ruleset");

Step 3: Add rules

int err;
struct landlock_path_beneath_attr path_beneath = {
 .allowed_access = LANDLOCK_ACCESS_FS_EXECUTE | […] ,
};

path_beneath.parent_fd = open("/usr", O_PATH | O_CLOEXEC);
if (path_beneath.parent_fd < 0)
 error_exit("Failed to open file");

err = landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0);
close(path_beneath.parent_fd);
if (err)
 error_exit("Failed to update ruleset");

Step 4: Enforce the ruleset

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
 error_exit("Failed to restrict privileges");

if (landlock_restrict_self(ruleset_fd, 0))
 error_exit("Failed to enforce ruleset");

close(ruleset_fd);

Full example: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/samples/landlock/sandboxer.c

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/samples/landlock/sandboxer.c

Upstreaming and adoption

History 1. Initial RFC (Mar. 2016)

2. 34 patch series with different designs:

seccomp, eBPF (see SSTIC 2017),

cgroups…

3. Merged in Linux 5.13 (Apr. 2021)

https://www.sstic.org/2017/presentation/landlock/

Why upstream? • Contribute back

• Make features available to downstream

users

• Get reviews improving quality

• Limit maintenance cost

• Get contributions

Linux

development

• Largest open-source project: new release

every 10 weeks involving ~2k

developers, more than ~500k lines of

code, with ~17k commits

• Different subsystems, different

communities

• Tools: Git, emails, and a lot of scripts

Adoption

requirements

Enabled by default on multiple distros:

Ubuntu, Fedora, Arch Linux, Alpine Linux,

Gentoo, Debian, chromeOS, Azure Linux,

WSL2.

Working with most container runtimes:

Docker, Podman, runc, LXC…

Development tools, libraries for different

languages.

Adoption Some known users: chromeOS, Azure,

Cloud Hypervisor, Nomad, Polkadot,

Firejail, Suricata…

Soon your applications!

• Secure Open Source Rewards

• Google Patch Rewards

https://sos.dev/
https://bughunters.google.com/about/patch-rewards

Getting noticed by attackers too!

Landlock support in XZ Utils:

• 5.6.0 (2024-02-24)

• 5.6.1 (2024-03-09)

• 5.6.2 (2024-05-29)

Try Landlock

WARNING: The "sandboxer" is a demonstration program,
not a tool with a stable interface.

$ cargo install landlock --examples

$ sandboxer

Wrap-up

Roadmap Ongoing and next steps:

• Add new access-control types: socket,

signals, IPCs…

• Add audit support to ease debugging

• Develop a new sandboxer tool

• Improve adoption

See GitHub issues: landlock-lsm/linux

https://github.com/landlock-lsm/linux/issues

Contribute • Develop new access types and tests

• Improve libraries: Rust, Go…

• Improve documentation

• Challenge implementations

https://github.com/landlock-lsm/rust-landlock
https://github.com/landlock-lsm/go-landlock

Questions?

https://docs.kernel.org/userspace-api/landlock.html

GitHub: landlock-lsm/linux/issues

Past talks: https://landlock.io

landlock@lists.linux.dev

Thank you!

https://docs.kernel.org/userspace-api/landlock.html
https://github.com/landlock-lsm/linux/issues
https://landlock.io/
mailto:landlock@lists.linux.dev

	Introduction
	Slide 1: Landlock: From a security mechanism idea to a widely available implementation
	Slide 2: Agenda

	Problem statement
	Slide 3: Problem statement
	Slide 4: Goal: protect data
	Slide 5: Pragmatic statements
	Slide 6: Attack cost

	Security sandboxing
	Slide 7: Security sandboxing
	Slide 8: What is sandboxing?
	Slide 9: Tailored and embedded security policy
	Slide 10: Dynamic policy composition
	Slide 11: Safe security mechanism
	Slide 12: Non-Linux systems
	Slide 13: Candidates for a sandboxing mechanism

	Landlock properties
	Slide 14: Landlock properties
	Slide 15: Use case #1
	Slide 16: Use case #2
	Slide 17: Landlock empowers developers
	Slide 18: How Landlock works?
	Slide 19: Current access control
	Slide 20: Current filesystem access rights
	Slide 21: Current networking access rights

	Landlock interface
	Slide 22: Landlock interface
	Slide 23: Step 1: Check backward compatibility
	Slide 24: Step 2: Create a ruleset
	Slide 25: Step 3: Add rules
	Slide 26: Step 4: Enforce the ruleset

	Upstreaming and adoption
	Slide 27: Upstreaming and adoption
	Slide 28: History
	Slide 29: Why upstream?
	Slide 30: Linux development
	Slide 31: Adoption requirements
	Slide 32: Adoption
	Slide 33: Getting noticed by attackers too!
	Slide 34: Try Landlock

	Wrap-up
	Slide 35: Wrap-up
	Slide 36: Roadmap
	Slide 37: Contribute
	Slide 38: Questions?

