
Landlock: From a security mechanism idea to a

widely available implementation

Mickaël Salaün
mic@digikod.net

Microsoft

Abstract. Landlock’s goal is to make it possible for Linux applications
to sandbox themselves. On Linux, many traditional access control mech-
anisms are only available to the system administrator, which do not
follow the principle of least privilege. As a result, sandboxing policies
were created independently of an actual program execution, leading to
unnecessarily broad policies. With Landlock, unprivileged processes can
safely create sandboxing policies well-tailored to the expected needs of
a running application. Landlock also solves the organizational aspect of
keeping policy and software in sync with each other, by putting the policy
definition and maintenance in the developer’s hands.

The development of Landlock happened in three steps: design, integration
in the Linux kernel, adoption by distributions and developers. This article
gives our feedback on all these steps, which are all crucial to widely
protect users.

1 Introduction and goal

Linux is used globally across various applications, including end user
devices and cloud computing. Most security features are focused on system
administrators and distribution maintainers, excluding a subset of users
such as developers or end users. Even if the rich application ecosystem
(e.g., developer tools, network services, smartphone apps) is a major reason
for the success of Linux, no security features were dedicated to confine
applications (i.e. sandboxing) and protect all users.

The goal is to improve the security of all Linux users and especially
to protect users from attacks targeting their applications. It is assumed
that all initially trusted software can become malicious once compromised,
which is the motivation to isolate those components from one another.
This led us to develop Landlock which brings a suitable sandboxing
mechanism to Linux. Landlock empowers developers by putting security
policy creation and maintenance in their hands, closer to the programs
that the policy is about. Because all users rely on programs, Landlock can
empower everyone. This primitive leads to useful development properties
and security guarantees explained in this article.



2 Landlock

2 Properties of a security sandboxing mechanism

One of the initial threats for multi-user operating systems was one user
accessing data from another user. This leads to defining security policies
to protect users against each other. This kind of policy (i.e. Mandatory
Access Control) must then be defined by an entity with greater privileges,
either the system administrator or the distribution developer. Sandboxing
is different because it is available to everyone.

2.1 What is sandboxing?

A sandbox is defined as “a restricted, controlled execution environment
that prevents potentially malicious software [. . . ] from accessing any system
resources except those for which the software is authorized” [22].

Users can manage data for different use cases (e.g., one per customer)
with a set of applications. An application instance can get compromised
and act against its user by accessing data on their behalf. The goal of
sandboxing is then to isolate attacks in sandboxes the same way users are
isolated from one another.

Application development and distribution models bring additional
constraints. Frequently, the same application runs on a whole set of
supported systems (e.g., all Linux distributions). A sandbox mechanism
needs to be flexible enough to protect users as much as possible according
to the running system.

2.2 Dynamic policy composition

Any process should be able to sandbox itself, which means that the
system should be able to compose hierarchically nested security policies,
which are aligned with the hierarchy of processes and their parent relation-
ships, but also taking into account any other access control mechanisms
enforced by the system.

Because each user can launch applications several times, each of them
must be able to sandbox themselves, creating sibling sandboxes. This
means that each application defines its own security policy, and all of
them must be enforced by the kernel. This also means that the lifetime of
such a policy is tied to the set of processes being restricted.

Through nested sandboxing, an environment or an application can
restrict itself further. For instance, the init system might create a sandbox
for itself, then for the user session, then the user might sandbox a shell
and launch an application with embedded sandboxing. To get an efficient



M. Salaün 3

and then usable access control, handling nested sandboxes must not lead
to a significant performance impact.

In figure 1, the composition of all security policies enforced on a system
may include sibling and nested sandboxes. The kernel needs to manage
this set of ephemeral policies in a consistent way while the system is
running.

Fig. 1. Composition of isolations: nested and sibling sandboxes

2.3 Principle of least privilege

A sandboxing mechanism available to application developers implies
providing an access control mechanism safe for unprivileged users. Applying
the principle of least privilege to sandboxing, dropping privileges should
be an unprivileged operation (e.g., not relying on a SUID binary nor a
privileged service).

In practice, this means that Linux capabilities should not be a require-
ment. Any privilege elevation mechanism such as setuid binaries should
not be required, and they should even be denied so that they cannot be
abused to bypass the sandbox [5]. Similarly, relying on a user space security
broker leveraging privileged features (e.g., filter and forward system calls)
put the security guarantees on both the kernel and the broker. Because
this broker’s goal is to restrict the use of some kernel resources (e.g., files)
for another kernel resource (i.e. a process), incorrect mirroring of the
kernel semantic and state, or race conditions, could create vulnerabili-
ties [14]. Anyway, trying to shoehorn a privileged security mechanism into
an unprivileged one should raise a red flag.

2.4 Innocuous access control

Being able to enforce restrictions on ourselves should not lead to
privilege escalation, which could be caused by denying access to resources



4 Landlock

for more privileged subjects (i.e. processes). A first limitation should then
be that a subject should only be able to enforce restrictions on itself, or
on equally or less privileged subjects.

A simple way to apply this principle would be to tie restrictions to a
scope of subjects, including the requester. However, we need to be careful
and consider different kinds of confused-deputy attacks.

2.5 Protecting against bypasses

The sandboxing mechanism implementation should make sure that
there is no way to bypass enforced security policies.

Impersonation A sandboxed subject must be confined from less sand-
boxed ones. It must not be allowed to impersonate a more privileged
subject, which could lead to privilege escalation and then a policy bypass.
In addition, it must not be allowed to access data from subjects with more
privileges, which could include data not otherwise accessible (e.g., file’s
content copied in memory) and bypass integrity or confidentiality.

Access-control consistency A sandboxed subject must not be allowed
to perform confused-deputy attacks on more privileged subjects (regarding
restricted resources). For instance, it must not be possible to pass a
resource with a restricted set of rights (e.g., file descriptor) to a more
privileged subject and get back the initial resource with more rights.

Policy correctness When implementing a sandboxing mechanism, it
might not be possible to enforce these principles for all more privileged
components. For instance, a kernel can only let user space know about
less privileged processes but not make sure that they correctly request
this information nor correctly take it into account. A security policy
misconfiguration could allow a sandboxed process to tamper with its
own or other’s persistent data (e.g., configuration file, cache) and then
alter behavior of next runs (e.g., disable sandboxing), leading to privilege
escalations. The enforcing component (e.g., kernel) may not be able to
protect nor warn against this kind of security policy misconfiguration
because it may not know about these sensitive data.



M. Salaün 5

3 State of the art of sandboxing in non-Linux systems

Most general-purpose operating systems provide at least a way to
configure an access control system, and some of them are sandboxing
mechanisms.

3.1 XNU Sandbox

XNU Sandbox [4], previously called Seatbelt, is a security compo-
nent used by iOS and macOS. It is based on the TrustedBSD security
framework [42]. Filesystem and network access rules are defined with
an S-expression language, and files are identified by path via regular
expressions.

3.2 Pledge and Unveil

The pledge() [23] system call is a sandboxing mechanism developed
and used by OpenBSD. It enables us to define a set of allowed accesses with
promises, each covering a set of related system calls. For instance, the dns

promise allows DNS network transactions. The pledge() implementation
makes assumptions about OpenBSD’s file topology (e.g., hard coded
/etc/resolv.conf path).

The unveil() [24] system call complements pledge() for file path
restrictions. It enables us to define a set of file hierarchies for which a
given set of actions are allowed: read, write, execute, and create.

3.3 Capsicum

The goal of Capsicum [43] is to bring the capability principle to UNIX
systems, currently FreeBSD, using file descriptors to pass capabilities. The
capabilities are a way for compatible applications to finely expose their
resources with a set of allowed access to other processes.

The main drawback is that this mechanism often requires bigger
changes to an application’s design. It might also be required to rely on a
set of brokers like Casper [13] to control sensitive actions.

3.4 AppContainer

Windows’s AppContainer [18] enables us to isolate execution environ-
ments. This includes credential, device, file, registry, network, process, and
window isolations.



6 Landlock

4 Linux security features

Table 2 compares different Linux mechanisms that may be used for
some kind of sandboxing.

Using a Virtual machine (VM) to protect the host from the guest makes
sense if few of the host’s resources (e.g., files, scheduling, IPC) are shared
with the guest. The host running the VM cannot reason why the shared
resources are being used because another independent operating system
is managing the contents of the VM (e.g., guest’s files, scheduling, IPC).
Moreover, running a VM requires privileges on the host, and embedding
it in an application would require a complex and integrated mechanism
such as Application Guard [19], which does not fit to the kernel’s realm.
Here, we are looking for a sandboxing mechanism able to control kernel
resources.

The Linux kernel provides complementary security mechanisms, includ-
ing several access control systems implemented as Linux Security Modules
(LSMs): SELinux, AppArmor, Smack, and Tomoyo. However, they are
designed to be configured by the system administrator and then defined
as Mandatory Access Control (MAC).

Namespaces are the main building blocks of containers. 1 They are
designed to create views of the kernel resources, but not to enforce access
control policies. Moreover, they are designed to be used by privileged users
(e.g., root) and giving access to such power to unprivileged processes can
lead to privilege escalation. Things are changing a bit with user namespaces,
but there are still ongoing security issues tied to such complexity [6, 10].

seccomp was designed to protect the kernel from malicious user space
processes. It works like a firewall for system calls, and can then filter
them according to their raw arguments. Some new features also enable
user space to emulate system calls, which is useful for compatibility fixes.
However, seccomp is not an access control system and cannot filter system
calls according to the underlying kernel object semantic (e.g., file, socket).
seccomp’s API is very powerful but also very complex because of filters
being BPF programs, which is an important practical concern for adoption.
Moreover, because of new or updated syscalls, there might be compatibility
issues across kernel versions, architectures, and libc changes [7].

Landlock was designed to fill the need for a sandboxing mechanism on
Linux and meet all these goals:

— low overhead whatever the number of (nested) sandboxes;

1 cgroups can also be used by containers to restrict processes, but they are mostly
designed to limit resource usage.



M. Salaün 7

Performance Fine-grained control Embedded policy Unprivileged use

Virtual Machine

SELinux

namespaces

seccomp

Landlock

Yes, compared to others

No, compared to others

In some way, but with limitations

Fig. 2. Comparison of different access control mechanisms

— fine-grained access control system for files, network, and other
kernel resources;

— security policy embeddable in applications, with all related chal-
lenges (e.g., policy composition, simple-enough and flexible API);

— usable by any processes, privileged and unprivileged.

5 Design constraints and principles

Applications are built on top of the system ABI, of which an important
and critical part is the kernel ABI. In a nutshell, the goal of the kernel is
mainly to share hardware resources with processes of different trust levels.
To maintain the required security boundaries, the kernel implements a set
of access control mechanisms (e.g., DAC, MAC). We want to extend these
mechanisms with a new one to support the sandboxing approach.

5.1 Kernel ABI

The main contract between the Linux kernel and user space is a low
level Application Binary Interface (ABI) provided through system calls.

Some synthetic filesystems (e.g., /proc) and special files might be
accessible to an application, but the kernel cannot make any assumption
about the contents and usage of files. For instance, this is not the case
with the OpenBSD kernel that can rely on more assumptions about user
space and file topologies (see section 3.2).

5.2 Kernel flavors

In the general case, applications cannot assume that all required kernel
features are available. Because generic Linux distributions allow great



8 Landlock

flexibility, system administrators can select a specific kernel version while
keeping user space as is.

Moreover, because the Linux kernel is highly configurable (at build
and run time), the available features can vary even within a single kernel
version. For instance, almost all Linux distributions build their own kernel
with their own configuration.

Respecting all supported versions, this gives a glimpse of the wide
variety of running kernels in the wild. Linux’s flexibility is powerful, but it
comes at a cost in maintenance and compatibility. When developing a new
kernel feature, it is needed to consider the variety of supported kernels for
wide adoption.

5.3 Multiple interfaces

Kernel resources can be identified and used in different ways. For
instance, a file descriptor can be acquired not only through the open

system call but also passed through a unix socket.

5.4 Sensitive kernel changes

Every change, including new security features, to a privileged com-
ponent such as the Linux kernel, is a risk of introducing new (security)
issues.

One of the goals of the kernel is to define exposed resources with
well-defined semantics and related access controls. The kernel needs to be
modified to extend the way these access controls are configured.

The kernel community mitigates these risks through code reviews,
design reviews, and tests to define guarantees and make sure they are kept
over time. Moreover, the implementation can be assessed by anyone (and
it happens in Linux), which can then improve our trust in this component.

5.5 Security policy principles

Landlock’s design and implementation follows a set of guiding principles
to avoid classes of implementation issues for sandboxes.

Access control is expressed with kernel objects (e.g., file, process)
instead of system call filtering (i.e. syscall arguments) unlike seccomp.

A security policy cannot define the error codes returned by system
calls (e.g., EPERM, EACCES, EXDEV) nor change the kernel interface semantic
to avoid compatibility issues (see section 7.3).



M. Salaün 9

To protect against multiple kinds of side-channel attacks leading to
parent policy leaks, kernel data leaks, or access requests leaks, the security
policy is not programmable (attacks based on execution time, speculative
execution time, or data access time) nor can communicate with user
space (e.g., using eBPF and the related maps). Furthermore, relying on a
program to define a layer of sandboxing would make the security policy
composition much more complex and it would have a high impact on
performance (see section 7.5).

Sandboxing operations such as defining or enforcing a security policy
only tax processes requesting such sandboxing for the required resource
usage (e.g., CPU usage, kernel memory allocations). In addition, the imple-
mentation of kernel access checks does not have a noticeable performance
impact on unsandboxed processes. Only sandboxed processes may notice
a small performance impact, especially when requesting a denied action.
These principles are crucial to scope the sandboxing constraints to only
a set of restricted processes, and to protect the system against denial of
service.

6 Landlock interface

Landlock is used through a set of user space interfaces to define sandbox
security policies.

6.1 Access rights

As for UNIX file access checks, most access rights are checked at file
open time, which limits the performance impact throughout the lifetime
of the resulting file descriptor. Sets of file access rights are defined as a
bit mask where individual access rights are named starting with with
LANDLOCK_ACCESS_FS_ These rights can be applied to files to control exe-
cutability, readability, and mutability: EXECUTE, READ_FILE, WRITE_FILE,
TRUNCATE. Another set of directory entry access rights can be applied
to control visibility and creation: READ_DIR, REMOVE_DIR, REMOVE_FILE,
MAKE_CHAR, MAKE_DIR, MAKE_REG, MAKE_SOCK, MAKE_FIFO, MAKE_BLOCK,
MAKE_SYM, and REFER. Being able to differentiate between file types is
useful to easily control creation of new interfaces (e.g., socket, character
device).

Network access rights are prefixed with LANDLOCK_ACCESS_NET_ and
currently control TCP bind and connect actions with BIND_TCP and
CONNECT_TCP. Each access right is explained in the official documenta-
tion [33].



10 Landlock

6.2 Landlock rules, rulesets, and domains

Landlock is a deny-by-default access control, but with a fixed set
of access rights for compatibility reasons. A Landlock ruleset defines
a security policy provided by a process to sandbox itself. Each ruleset
handles a set of restrictions, and additional rules can add exceptions to
these constraints (i.e. allow-list approach). When restricting a process, the
kernel merges the process’s inherited security policies, called a Landlock
domain, with the provided ruleset to create a new domain, composing all
these restrictions. Each Landlock domain is tied to at least one process,
and the domain ends when the last process exits. 2

In the example of figure 3, an unsandboxed process P1 can spawn a
first child P2, and then sandboxes itself before creating a second process
P3. In this case, P1 and P3 are sandboxed by the same initial (red) domain,
but P2 is still unsandboxed because it was created before the sandboxing.
Then, when P3 sandboxes itself and spawns its first child P4, they are
both restricted by the new (green) domain but also by the parent (red)
domain.

P2

P4

P1

P3

P_ Sandboxed process

Sandbox domain

Fig. 3. Sandbox hierarchies

6.3 Compatibility properties

To limit the cost of review and the impact of potential issues, Landlock
started as a Minimal Viable Product (MVP). Landlock is now gaining
more features over time, including new access rights.

Because of compatibility reasons, previous features need to be sup-
ported, and only new ones are added. The second version of the Landlock

2 Multithreading is a special case discussed in section 6.5.



M. Salaün 11

ABI added support for file reparenting (see section 7.3). The third ver-
sion added support for file truncation. The fourth version added initial
networking control for TCP bind and connect.

Because Landlock is not a fully featured access control system yet,
application requirements that might not be fulfilled by a specific kernel
version need to be considered. An application should not sandbox itself if
there is a risk to break a legitimate use case.

Compatibility between the kernel and user space is important for
common features, and more important for security features. Indeed, being
able to use the available kernel security features as much as possible is
crucial if the goal is to protect users as much as possible. Application
developers cannot expect all their users to use the same kernel version (see
section 5.1), and thus should follow a best-effort security approach: leverage
all available Landlock features without failing because of unsupported
ones [21]. However, this may be constrained by some minimally required
access and it may be complex to implement correctly.

Landlock is designed to be as simple as possible in the kernel side, and
to move the compatibility complexity to user space. For instance, the Rust
library is designed to make it easy for developers to use while providing
guarantees that their users will be protected as much as possible [35].

6.4 Policy definition suitable for embedded sandboxing

Landlock tackles the problem of application-defined sandboxing, which
means embedding a security policy into an application (i.e. built-in policy),
as close as possible to its semantic. A very useful property of embedded
sandboxing is that there is no need for an explicit security policy defined
by users because such policy can be implicit due to the application’s
configuration and requirements. Of course, implementing a sandboxing
mechanism with the related constraints means that Landlock also sup-
ports many more use cases requiring fewer constraints such as for any
process spawning another application (e.g., sandbox manager, init system,
shell). Being able to enforce complementary layers of security according
to different trust levels is also a very important property (see figure 7
explained in section 7.3).

Being able to easily integrate a security policy in an application also
brings some very useful properties such as testing. Indeed, a standalone
security API enables us to test security features as close as possible to
the business logic, similarly to other features. Good development hygiene
such as continuous integration tests makes it possible to have security



12 Landlock

guarantees about the embedded sandboxing, but more importantly to
make sure that all functional tests run well with such restrictions [35].

To make it possible to embed a security policy in any Linux application,
among all kernel interfaces, it can only be assumed that system calls
are available. 3 Indeed, synthetic file systems may not be visible (e.g.,
containers), and more generally other access control systems may already
be enforced and limiting the available interfaces. This led us to implement
new system calls dedicated to Landlock.

6.5 Landlock system calls

Landlock provides three system calls: landlock_create_ruleset(),
landlock_add_rule(), and landlock_restrict_self(). Following the
builder pattern, the first syscall creates a ruleset, the second syscall
populates the ruleset, and the third syscall enforces the ruleset. This API
is very flexible and was designed to easily add new features to Landlock
while still being compatible with the previous ones.

Unlike OpenBSD’s pledge() syscall which takes strings as argument,
Landlock syscalls take bitflags, enums, pointers to specific types, sizes,
or file descriptors. Landlock’s interface is more generic, which is required
because Linux user space is versioned and installed independently from
the kernel. Backward compatibility at the syscall layer must then be
guaranteed. For instance, most Linux distributions provide several kernels,
but the same set of user space components. Another benefit of Landlock’s
approach is to be able to get help from tools such as compilers or linters,
which could not help with strings as function arguments to check consis-
tency and compatibility. Manipulating bitflags and appropriate system
calls also makes it easier to programmatically create Landlock rules.

Unlike seccomp, Landlock does not filter system calls, but controls
access to kernel resources (e.g., file, process). Therefore, Landlock’s rules
do not need to be kept in sync with new Linux system calls because the
kernel’s semantic is maintained with the LSM framework. seccomp was
designed to protect the kernel and, as such, remains very valuable.

landlock_create_ruleset(attr, size, flags) This system call cre-
ates a new ruleset.

The attr argument is a pointer to a struct landlock_ruleset_attr

defining a set of access rights denied by default. This struct is extensible
and will gain new fields to define more access types.

3 As explained in section 9.1, that may not even be the case in practice, but the syscall
interface is still the best choice for standalone features.



M. Salaün 13

The size argument lets user space declare the size of the ruleset
attributes. Because newer kernels will handle more attributes, which
will make this struct grow, the kernel needs to know the number of
provided attributes. The compatibility trick is for the kernel to accept
any trailing zero values up to a maximal size. This way, user space can
update the struct landlock_ruleset_attr type with a larger one, and
it will remain compatible as long as the new fields are not set. If the kernel
receives unknown fields (i.e. trailing non-zero values), the E2BIG error
code is returned.

The flags argument, as for any other Landlock syscall, is an
optional flag. This is a good design to leave room for future fea-
tures. LANDLOCK_CREATE_RULESET_VERSION is the only valid flag for
landlock_create_ruleset(). It is used to get the Landlock ABI version
of the running kernel as an integer. As explained in section 6.3, leveraging
the documentation or a Landlock library, it is then possible to know all
available features. This makes it possible to adjust the security policy
according to the kernel capabilities. This design was preferred because it
is the simplest one, which reduces kernel complexity while enabling user
space to infer all required information. Any new Landlock feature must
increment this version and update the documentation accordingly.

In listing 1, the ruleset_attr variable is initialized with the handled
file access rights, which will all be denied unless explicitly allowed by a
rule. If the call to landlock_create_ruleset() failed, then a negative
error code is returned, otherwise a ruleset file descriptor is returned. This
file descriptor identifies the newly created Landlock ruleset and makes it
possible to change or use it.

Listing 1: Create a Landlock ruleset

1 struct landlock_ruleset_attr ruleset_attr = {

2 .handled_access_fs =

3 LANDLOCK_ACCESS_FS_EXECUTE |

4 LANDLOCK_ACCESS_FS_WRITE_FILE |

5 ... |

6 LANDLOCK_ACCESS_FS_MAKE_REG,

7 };

8

9 int ruleset_fd = landlock_create_ruleset(&ruleset_attr,

sizeof(ruleset_attr), 0);→֒

10 if (ruleset_fd < 0)

11 error_exit("Failed to create a ruleset");



14 Landlock

landlock_add_rule(ruleset_fd, rule_type, rule_attr, flags)

This system call populates a Landlock ruleset with a new rule.

The ruleset_fd argument is the file descriptor identifying the ruleset
to add an exception to.

The rule_type argument is an enum identifying the type of the rule:
LANDLOCK_RULE_PATH_BENEATH or LANDLOCK_RULE_NET_PORT.

The rule_attr argument is a pointer to a rule structure
as defined by the second argument. When rule_type is set to
LANDLOCK_RULE_PATH_BENEATH, rule_attr should be a pointer to a
struct landlock_path_beneath_attr value identifying a set of accesses
for a file hierarchy expressed by a (parent) file descriptor. Similarly, if
rule_type is set to LANDLOCK_RULE_NET_PORT, the rule would be defined
with a struct landlock_net_port_attr value identifying a set of ac-
cesses for a network port.

In listing 2, a path_beneath variable defines the rule allowing a set of
accesses on the /usr file hierarchy. If the call to landlock_add_rule()

succeeds, then the Landlock ruleset was correctly updated.

Listing 2: Add a new Landlock rule to the ruleset

1 int usr_fd = open("/usr", O_PATH | O_CLOEXEC);

2 if (usr_fd < 0)

3 error_exit("Failed to open file");

4

5 struct landlock_path_beneath_attr path_beneath = {

6 .allowed_access = LANDLOCK_ACCESS_FS_EXECUTE | ...,

7 .parent_fd = usr_fd,

8 };

9

10 int err = landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH,

&path_beneath, 0);→֒

11 if (err)

12 error_exit("Failed to update ruleset");

13

14 close(usr_fd);

landlock_restrict_self(ruleset_fd, flags) This system call re-
stricts the calling thread with the ruleset identified by ruleset_fd.

The Linux kernel manages task’s credentials (e.g., UIDs, capabilities)
per thread. This does not mean that restricting a thread with Landlock or
anything else would give any security guarantee. Threads are mostly units
of execution, sharing resources (e.g., memory, file descriptors) with all
threads from the same process. Therefore, any thread can tamper with the



M. Salaün 15

memory used by sibling threads, and then control their execution. This
means that threads should not be used as security boundaries. However,
being able to manage credentials per thread gives some flexibility that
can be used to create safeguards or tests. A process sandboxing itself
should then make sure that the calling thread is the only thread from this
process. 4

In listing 3, to avoid privilege escalation by executing
a SUID binary and restricting it, a thread must first call
prctl with the PR_SET_NO_NEW_PRIVS. If this is not done, any
landlock_restrict_self() call will fail. 5 landlock_restrict_self()

can then be called with the ruleset file descriptor. If no error is returned,
the calling thread is restricted with a new Landlock domain, which is
composed of the parent domains and the provided ruleset, and its future
children will inherit the same restrictions (see section 6.2). Updating the
ruleset is still possible, but it will not have impact on any domain.

Listing 3: Enforce a Landlock ruleset on the calling thread

1 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))

2 error_exit("Failed to restrict privileges");

3

4 if (landlock_restrict_self(ruleset_fd, 0))

5 error_exit("Failed to enforce ruleset");

6

7 close(ruleset_fd);

This sandbox scoping and the mandatory NO_NEW_PRIVS property
enables us to get the innocuous property as defined in section 2.4.

7 Kernel implementation

As part of the Linux kernel, Landlock is implemented as an access
control mechanism dedicated to create standalone sandboxes.

7.1 Linux Security Module

The Linux Security Module (LSM) framework provides a set of hooks
for access control and kernel resource management. It also manages the

4 Future work is planned to add a similar feature as seccomp’s
SECCOMP_FILTER_FLAG_TSYNC: https://github.com/landlock-lsm/linux/issues/

2
5 As for seccomp, a thread can still call landlock_restrict_self() if it has

CAP_SYS_ADMIN.

https://github.com/landlock-lsm/linux/issues/2
https://github.com/landlock-lsm/linux/issues/2


16 Landlock

set of LSMs (e.g., SELinux, AppArmor) which are configured at build or
at boot time. Especially, it makes it possible to run some of these LSMs
together so that an access request can be processed by all currently stacked
LSMs. Landlock is one of these stackable LSM, which means that it can be
used with any other LSM. This is an important property because Landlock
is a new layer of security. It is not meant to replace existing ones, and
users should not choose between Landlock or another security mechanism.
Developing this first (access control) stackable LSM was possible thanks
to a community effort to improve the LSM framework [38].

7.2 Implicit restrictions

As explained in section 2.5, a sandboxing mechanism should not
allow impersonation of processes outside of the sandbox. On Linux, the
ptrace() system call can alter another process, leading to impersonation.
Processes restricted by Landlock cannot request to trace processes not
part of the same Landlock domain or a child one, which can only have
more restrictions. For confidentiality and integrity reasons, accessing data
or resources from processes outside the sandbox is also denied. These
restrictions also apply to other kernel interfaces such as /proc: process’s
memory, file descriptors. . .

7.3 Filesystem access control

Ephemeral labeling A sandboxing mechanism needs to map access
rights to a set of files, either to allow or to deny access. At the same time,
a sandbox’s lifetime is bound to the lifetime of the contained processes,
so no trace (on the filesystem) of the related security policy must remain
after that.

It is not possible to label files in a persistent way for several reasons:

— multiple concurrent policies can be enforced at the same time,
from different applications or even different versions of the same
application;

— new files are not owned by the application sandboxing itself but
the user launching it;

— some files can be owned by other users, for instance system files
owned by root;

— some files can only be accessible in a read-only way;
— some files are served by synthetic filesystems (e.g., /proc), which

means that they are not backed by a storage device.



M. Salaün 17

— some other files are served through the network (e.g., NFS), and
then not fully controlled nor trusted by the local kernel.

Therefore, a sandboxing implementation cannot rely on file metadata such
as regular file permissions, ACLs, or extended attributes (i.e. xattr) like
used by SELinux and Smack.

Linux is a flexible kernel that empowers users to create namespaces
for different kernel resources. The mount namespace creates a virtual
filesystem topology exposed to a set of processes, for instance in a container.
Therefore, processes may have different file topology or root directory.
Moreover, namespaces of a process can change during its lifetime, which
makes it impractical to create rules tied to namespaces. Furthermore,
relying on file paths relative to the init namespace could expose to side-
channel attacks against other access control systems (e.g., infer other
restrictions because of Landlock). Because sandboxed processes can be in
a mount namespace, a sandboxing security policy cannot be defined with
absolute file paths like used by AppArmor and Tomoyo.

Considering the defined sandboxing constraints, a new way to identify
files for Landlock was designed. Labeling must be ephemeral and only
stored in memory to make it possible to tie each security policy to the life-
time of the related sandboxed processes. User space passes a file descriptor
to the kernel through the landlock_add_rule() syscall. The kernel then
looks at the related inode and ties it to either a new Landlock object or
an existing one. This Landlock object is used as a generic kernel object
identifier owned by all Landlock rules identifying this inode and then tied
to their lifetimes. Because files can disappear (e.g., deleted or unmounted),
Landlock objects are implemented as weak references to kernel objects,
which makes this mechanism light and race condition free.

A ruleset is dynamic and is mainly implemented as a red-black tree.
For now, a domain uses the same data type as a ruleset (to make it
simpler), but a better approach would be to use a hash table because
domains are immutable. The handled access rights of the inherited parent
domains are stored in a flexible array member. A similar stack of access
rights is used for rules, but this time to identify allowed accesses. These
stacks keep a complete view of the composed rulesets, which are required
both for correct policy composition and for auditing. Indeed, being able
to tell which (parent) domain is denying an access request is very use-
ful for application developers, kernel developers, system administrators,
distribution maintainers, security experts, or power users. This property



18 Landlock

will be critical to better understand the reason of denials with the audit
framework. 6

Access rights of opened files When a sandboxed task opens a file, it
gets a new file descriptor if the open mode (read or write), matches
LANDLOCK_ACCESS_FS_READ_FILE, LANDLOCK_ACCESS_FS_READ_DIR, or
LANDLOCK_ACCESS_FS_WRITE_FILE. Because this open mode cannot be
changed for an opened file (struct file), it is guaranteed that the secu-
rity policy will be enforced by every part of the kernel without additional
changes. However, some operations on opened files might not be controlled
by the open mode. For instance, most ioctl operations are not related to
the read nor write semantics of regular files.

Moreover, because Landlock is incrementally gaining more access
rights, some might initially not be handled (i.e. always allowed) and
become controllable with a new version of the kernel. For instance, the
truncate operation was initially allowed and because such an operation
can be performed on a file path or a file descriptor, it was required to tie
the new LANDLOCK_ACCESS_FS_TRUNCATE right to the opened file. This
has implications for the access rights check because the open operation
might be allowed but not the following truncate operation. Some optional
access right must then be collected but not necessarily checked at open
time.

As explained in section 2.5, less restricted processes need to be pro-
tected against confused-deputy attacks. For instance, a file opened by an
unsandboxed process and then passed to a sandboxed process should not
get any restrictions. Similarly, if a file is opened by a sandboxed process
without the LANDLOCK_ACCESS_FS_TRUNCATE right, and then passed to
an unsandboxed process, and then returned to the sandboxed process,
the truncate operation must still not be allowed on this opened file. This
means that it must never be allowed to truncate this opened file even in
the unsandboxed process receiving it. Scoped restriction may not only
apply to the sandbox but to the whole system that could share some
resources with the sandbox.

Access rights tied to opened files are stored as a bitmask, which makes
it efficient because of its small memory footprint and locality. This means
that even unsandboxed tasks with limited access to such opened files
will not pay a noticeable performance impact, which is in line with the
principles defined in section 5.5.

6 Audit support was part of the initial design and is currently actively being worked
on.



M. Salaün 19

Composition of file hierarchy restrictions Landlock domains have
references to a set of rules that can identify inodes. When access is
requested by sandboxed processes, all these restrictions must be considered.
Starting with the leaf file or directory of a path, Landlock walks towards
the real root directory, considering the different mount points of this path,
but ignoring the covered ones (i.e. one mount point over another). For
each of the walked inode, if a struct landlock_object is tied to it, then
Landlock looks if the current domain has a reference to it. If this is the
case, the related allowed access is looked at to see if it matches the request.
If a domain’s layer handles this access and one of its rules is found and
matches for this inode, then this layer is marked as allowing the request.
The path walk continues until all layers grant access to the request.

Let’s say a session manager creates a first layer of sandboxing for
logged users. In figure 4, this security policy must be quite permissive
because users should be allowed to do anything with their files. However,
a security policy with a list of allowed file hierarchies can still be enforced:
common system directories in read-only, /home and temporary directories
in read-write. This gives us some basic security guarantees: for instance,
users would not be able to access files in /boot or test files forgotten by
the system administrator at the root directory.

Then a user can launch an application with a sandbox manager (e.g.,
Firejail). In figure 5, according to a dedicated profile, the new application
instance can initially only be allowed to access files potentially required:
the application’s libraries, the system’s and user’s configurations, a cache
directory, and the directory used to store pictures. This application can
now only access the specified files, but not sensitive ones (e.g., user’s SSH
private keys).

In figure 6, the newly launched application instance can finally sandbox
itself to tailor its access according to user’s provided arguments: the image
to display. Now, only the cache and the specified picture can be accessed.
If the picture includes an exploit to take control of the application (e.g.,
because of a bug in a parser), the malicious code would only be allowed to
access the picture in a read-only mode, and the related cache in read-write
mode.

In figure 7, the request to open the cool.jpg file must be approved by
all three sandbox layers. This defense in depth approach helps mitigate
the security impact of exploits thanks to complementary scoped accesses.
For instance, if a first exploit takes control of the sandboxed application’s
process and can write a second exploit in the cache, then this attack could
persist until the next launch. This could then be used to create a persistent



20 Landlock

attack that could potentially bypass the third sandboxing layer by not
creating it in the first place, but it would not be able to bypass the parent
layers.

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

RW

proc RW

R Read

W Write

X eXecute

Fig. 4. Nested sandboxes: first layer

etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures R

Fig. 5. Nested sandboxes: second layer

File topology changes Several nested sandbox layers can define different
restrictions on the same file hierarchy. Because the rules that defined the
related allowed accesses are tied to inodes, being able to change the parent
of a file hierarchy from a less privileged rule to a more privileged rule
would allow to change the related files in a way that was not allowed at
the ruleset creation time. Reparenting a file hierarchy can be done with
either a bind mount, a hard link, or a rename action.



M. Salaün 21

home user/

.cache app RW

Pictures Rcool.jpg

Fig. 6. Nested sandboxes: third layer

dev

etc

home

tmp

var

usr

user/

RX

R

RW

RW

RW

proc RW

etc

home

usr

user/

RX

R

.cache app RW

.config app RW

Pictures

home user/

.cache app RW

Pictures cool.jpg RR

RW

Fig. 7. Nested sandboxes: check all three layers

Bind mount exposes a file hierarchy several times as subsets of other
file hierarchies. pivot_root swaps the root directory of the current mount
namespace with an arbitrary directory. Both actions can change the file
topology of a mount namespace, and they must then be restricted by
Landlock to avoid policy bypasses. Any mount or pivot_root actions
are currently denied for any sandbox. 7 However, just changing the root
directory of a mount namespace does not put the Landlock security
policies at risk because it only scopes the file topology to a subset of
the original one. For this reason, chroot is not denied, even if it requires
Linux privilege.

The link() system call makes a file visible in several directories at the
same time. The rename() system call moves a file or a directory without
copying it, which means to change its parent directory. Both features may
change the file topology when the new parent directory changes (not just
the file name). These actions are then allowed when there is no reparenting,
but it was initially denied when linking or renaming files or directories
otherwise.

7 https://github.com/landlock-lsm/linux/issues/14

https://github.com/landlock-lsm/linux/issues/14


22 Landlock

To allow file links and renames, the source and destination file hierarchy
must have the LANDLOCK_ACCESS_FS_REFER right, but this is not enough.
Indeed, moving or linking a file must not result in a privilege escalation
because of new allowed access rights inherited from the new file hierarchy.
Partial ordering for layers of file hierarchy accesses were implemented to
be able to know if there are more privileges provided for a file hierarchy
than another. This way, Landlock can allow a file to be linked or renamed
if the destination file hierarchy would not give more access to this file.

Without Landlock, links and renames only make sense when the source
and the destination are on the same mount point, not only the same
filesystem. When such an action is requested on different mount points,
the kernel denies the request with the EXDEV error code to inform user
space about the reason. When user space gets this error code for a rename

action, it should fall back to copying the source to the destination and
removing the source file. Landlock leverages this compatibility mechanism
by returning the EXDEV code when the source or destination does not have
the LANDLOCK_ACCESS_FS_REFER right. However, if the fallback would not
succeed because LANDLOCK_ACCESS_FS_MAKE_* (according to the file type)
is missing for the destination, then Landlock returns the EACCES error code.
Additionally, for a rename operation, LANDLOCK_ACCESS_FS_REMOVE_FILE

must be allowed on the source.

7.4 Network access control

Starting with Linux 6.7, a Landlock ruleset can handle
two new access rights: LANDLOCK_ACCESS_NET_BIND_TCP and
LANDLOCK_ACCESS_NET_CONNECT_TCP. When handled, the re-
lated actions are denied unless explicitly allowed by a struct

landlock_net_port_attr rule for a specific port.

This initial network support is simple and useful for most applications
using TCP. Defining restrictions based on a set of ports is interesting
because it identifies a set of well-defined services. 8 From an application
developer point of view, most of the time it does not really make sense
to restrict access to a specific peer, which might be defined with a name,
resolved by a DNS client, but not the kernel.

Access rights are not tied to opened sockets but checked at bind or
connect call time against the caller’s Landlock domain. For the filesystem,

8 It is of course possible for any service to use any available TCP port, but IETF’s
RFC 1340 exists for Internet services to be publicly reachable with a well-known
ports.

https://datatracker.ietf.org/doc/html/rfc1340
https://datatracker.ietf.org/doc/html/rfc1340


M. Salaün 23

an opened file is direct access to data. However, for network sockets, it
cannot be identified for which data or peer a newly created socket will
give access to. Indeed, only a connect or bind request makes it possible to
identify the use case for this socket. Likewise, a directory file descriptor
may enable us to open another file (i.e. a new data item), but this opening
is also restricted by the caller’s domain, not the opened directory’s access
rights.

When a domain contains only network restrictions (on all layers), then
there is no restriction on file topology change (see section 7.3).

7.5 Complexity

Policy composition, and especially efficient nested sandboxing, is chal-
lenging. For instance, seccomp supports stacking but the stacked filters
are executed one after the other, which leads to a O(n) complexity with
n as the number of layers, and then a high performance impact.

Because Landlock’s security policies are a set of simple rules (instead
of complex BPF programs), n rulesets can be merged and create a new one
containing all composed constraints. For the worth case scenario, lookup
complexity is O(log n) with n as the number of layers, which results in
negligible performance impact.

In practice, the evaluation of a rule may require reading n access rights
per kernel object, but because they are stored aligned (same locality) and
take 16 layers × 16 potential rights = 256 bits = 32 bytes, it is really
quick to read and compute compared to the other kernel operations (e.g.,
file path walk).

For simple rule types such as TCP ports, all layers could be merged to
get O(1). However, this approach was not chosen for debugging and au-
diting reasons. Indeed, identifying which domain denies an action requires
storing this mapping and getting it when access is requested.

The most complex part was the LANDLOCK_ACCESS_FS_REFER right [34].
Because of the way Landlock identifies files by their hierarchy, linking or
renaming files in a way that would change their parent directories could
make existing files available in directories where a different access policy
applies. To avoid potential policy bypasses, Landlock needs to check that
files do not gain additional access rights in their new locations. A partial
ordering with potential nested layers was implemented to make sure that
a destination would not inherit new access rights.

Composing sibling sandboxes might seem easy if the access control ar-
chitecture is focused on specific subjects (i.e. processes), but resource pass-
ing needs to be considered. Passing file descriptors around processes should



24 Landlock

be allowed but not to gain new access exploiting a confused deputy vulnera-
bility (see section 2.5). In the case of the LANDLOCK_ACCESS_FS_TRUNCATE

right, potential access rights of opened files must be collected and saved
even if there are not requested at open time because they could be required
in a following system call with the same opened files. This provides an
access control system consistent with the common read and write modes
for opened files.

7.6 Testing and fuzzing

While developing Landlock, a lot of tests were implemented with
the Kselftest framework. Test coverage for the Landlock code part of
Linux 6.7 (released in 2024) is more than 92% of lines,9 which is the
maximum of what user space tests can cover. Indeed, the remaining
lines are part of race condition checks, kernel runtime error checks (e.g.,
failed memory allocation), 10 or runtime safeguards required for guaran-
tees not provided by the C language (e.g., all WARN_ON_ONCE() calls that
should never be reachable). Comparing Single Lines of Code (SLOC)
on Linux 6.7, there are around 2000 SLOC for the Landlock imple-
mentation (security/landlock) against 5400 SLOC for Landlock tests
(tools/testing/selftests/landlock). This represents 210 test cases
sharing more than 1500 assertions, which makes Landlock one of the
best-tested subsystem with Kselftest.

Fuzzing the syscall interface is very important to find potential issues
that could be used by attackers. However, fuzzing needs to be efficient
by tweaking the inputs in a smart and relevant way. syzkaller is an
unsupervised coverage-guided kernel fuzzer that was initially developed
with the Linux kernel in mind. We contributed to syzkaller by defining the
Landlock syscalls and writing some corner-case tests to improve coverage.
Thanks to these changes, syzkaller coverage for the Landlock code part of
Linux 6.7 is currently 71%. 11 Fuzzing helped find an issue while developing,
and it gives some guarantees with all new kernel versions that the Landlock
syscalls could not be used to attack the kernel.

7.7 Limitations

Design scope Landlock is part of the Linux kernel, which means that it
can only control kernel resources. Consequently, user space services are out

9 According to GCC/gcov version 13.
10 Some of the runtime errors could be reached by user space, but this requires injecting

faults into the kernel: https://github.com/landlock-lsm/linux/issues/22
11 https://syzkaller.appspot.com/upstream/manager/ci-qemu-upstream

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/security/landlock?h=v6.7
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/tools/testing/selftests/landlock?h=v6.7
https://github.com/landlock-lsm/linux/issues/22
https://syzkaller.appspot.com/upstream/manager/ci-qemu-upstream


M. Salaün 25

of scope: display server, sound server, DNS, user management. . . These
services should be controlled with a dedicated user space access control
system such as Polkit, complementary to Landlock.

Ongoing work For now, the main limitations of file access control are
metadata access (e.g., file properties, extended attributes) and file path
probing. However, Landlock can fully control access to file contents. We
are working on extending Landlock’s access control with new rights for
already supported subsystems (i.e. file, TCP), but also to support new
subsystems (e.g., task signaling, sockets, IPCs). 12

Performance and usability improvements are also planned, especially
with path walk access caching, tailored data types, and audit support to
improve debuggability and provide metrics [37].

8 Upstreaming

Upstream refers to maintainers of software, whereas downstream refers
to consumers of this software. Bringing changes to an open-source software
should include the process of upstreaming as early as possible.

8.1 Why integrate changes in Linux mainline?

From a pragmatic point of view, there are at least three reasons to
push changes to the mainline project:

— to make them available to all project’s users,
— to get help and reviews improving quality,
— to limit maintenance cost.

Of course, contributing back to something we use is also great motivation
and it gives visibility.

Merging our changes in the main project makes them available to the
whole project community, including all downsteam users. In the case of
Landlock, this is our goal: to protect as many users as possible.

8.2 Development workflow

A huge project Any software, open-source or not, may have a set of
principles and rules. This may include coding style, code of conduct, version
control usage, documentation, tests and more [15]. The Linux kernel is
the largest open-source project in the world. This requires appropriate

12 https://github.com/landlock-lsm/linux/issues

https://github.com/landlock-lsm/linux/issues


26 Landlock

management. For instance, during the 10 weeks of release preparation,
contributions from around 2000 developers may be merged, which may
result in the addition of more than 500000 lines of code with more than
17000 commits [11]. The kernel source contains several subsystems, each of
them managed by a set of maintainers. Subsystems can also be part of other
subsystems, e.g., the network subsystem includes the eBPF subsystem.
Even if there are multiple efforts to get a global consistency across all
Linux kernels, in practice the subsystems rules may vary. As a result,
contributing to different subsystems can sometime lead to inconsistent
requirements.

The security subsystem The Linux Security Module framework is
mainly an API shared by several security subsystems (e.g., Linux capabil-
ities, SELinux, AppArmor, Landlock). It defines security hooks, enforce-
ment points, and shared data types. It is maintained with the security
subsystem and evolves over time according to the requirement of its users.
Adding a new access control system may imply adapting this framework,
which means changing code in other subsystems (e.g., filesystem, network).
Indeed, security cannot be isolated to a set of files or a part of the kernel.

Emails, Git, and tooling Unlike most open source development, kernel
discussions and code reviews mainly happen on mailing lists. A patch
series is sent by email for each consistent set of changes, creating an email
thread. From this thread, reviewers can start a discussion in a free format.

Being able to scale with a huge volume of contributions is challenging
and emails happen to work fine [16]. A lot of kernel maintainers are very
efficient at querying and filtering emails, which enables them to lead wide
communities. Emails are also flexible and inclusive in the sense that it
makes it easy to add new people or mailing lists to an existing discussion
or code review, without requiring an account on a specific platform tied
to specific rules. This decentralized architecture helps improve reliability
of development and makes archiving easy. 13

However, while emails are the initial medium, Git repositories are
required for maintainers to send pull requests with signed tags to the
maintainer of the parent subsystem (e.g., Linus Torvalds at the top). Git
was initially created for Linux development and has since been adopted
by most developers. Pull requests must have been tested in the linux-next

13 There are ongoing discussions about alternatives to emails, but change comes with a
cost proportional to the size of the project and the number of people and organizations
involved.

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
https://lore.kernel.org/git/20240201-primitive-aardwark-of-contentment-aaabb9@lemur/


M. Salaün 27

repository, and it is the responsibility of the maintainer requesting the
merge to check that everything work as expected. Of course, full testing
is done for each new release.

A set of online tools help navigate with flows of contributions (e.g.,
lore, patchwork), public services run tests (e.g., LKP/0-Day CI, KernelCI,
syzbot), and developer tools help working with patches (e.g., Git, b4 , lei,
email client with custom scripts).

8.3 How to contribute?

Conference talks and articles are a great way to understand the cur-
rent state of development of a specific subsystem. The user space API
documentation 14 (including man pages), user space code (tests, samples),
and libraries documentation are useful to understand the design of the
interface (e.g., syscall, synthetic filesystem) which is key for usability and
maintainability of a subsystem.

To actively contribute, it is important to understand the development
process [15], and especially how the subsystem’s community works. Reading
mailing list discussions related to merged features is a good start, and
this can be eased with the Link tags in commit messages. Identifying
maintainers and active contributors can help follow the project’s direction.
Some subsystems have a bug tracker that can ease this process.15 This
can be used to identify areas for first contributions (good first issue) and
start with small but useful patches (e.g., fix issues, improve code or user
documentation). Such contributions may target another part of the kernel
from which the target subsystem would benefit, with others.

To minimize the cost of review and maintenance, good quality contribu-
tions must include tests, documentation, and helpful commit descriptions
in consistent and bisectable patches. However, before investing too much
in a complex feature and the related tests and documentation, it might
be a good idea to start with a Request For Comments (RFC).

Private discussions with maintainers or contributors can help first
contributions, but keep in mind that most discussions, especially reviews,
should take place in public, which means on a related mailing list for
Linux. Contributions may take time to land but keep going, take feedback
from reviews and comments to learn, improve, and build reputation, it’s
worth it!

14 https://docs.kernel.org/userspace-api/landlock.html
15 https://github.com/landlock-lsm/linux/issues

https://lore.kernel.org/
https://patchwork.kernel.org/
https://github.com/intel/lkp-tests
https://kernelci.org/
https://syzkaller.appspot.com/upstream
https://git.kernel.org/pub/scm/git/git.git
https://git.kernel.org/pub/scm/utils/b4/b4.git/
https://public-inbox.org/lei.html
https://docs.kernel.org/userspace-api/landlock.html
https://github.com/landlock-lsm/linux/issues


28 Landlock

8.4 Initial review cycles and design evolutions

Landlock development started in 2016 as an extension of seccomp [25].
This initial approach was to improve an existing mechanism with new
features, but we quickly found out that this was not a good approach in
the long run. The main issue is that the syscall layer is not a good place
for checks related to kernel semantics.

With the second version of the patch series, we switched to the LSM
framework, eBPF and cgroups. This new direction was promising thanks
to the powerful and flexible eBPF engine [26].

In 2018, the eighth version of the patch series added support for file
path identification with dedicated eBPF helpers. After that, it was mostly
patch shrinking to reach a Minimum Viable Product (MVP).

In 2020, we revamped the whole patch series without eBPF, adding a
new dedicated system call. eBPF is very powerful and can be leveraged
by attackers against the kernel (e.g., verifier bugs, Spectre), which makes
it unfit for unprivileged users [8]. Programmable interface with I/O (e.g.,
eBPF maps) can lead to side channel attacks against other programs (see
section 5.5). Moreover, it is not possible to efficiently compose programs
at run time but only to stack them (cf. seccomp), which would make eBPF
use for sandboxing inefficient (see section 7.5). Anyway, this work on eBPF
was still useful for the next versions of the patch series, and it contributed
to bootstrap the BPF LSM, previously called Kernel Runtime Security
Instrumentation (KRSI [39]).

With the 21st patch series, we switched to 3 dedicated syscalls (see
section 6.5) to avoid a syscall multiplexer, and we improved the user space
interface. Finally, the 34th patch series was merged [9, 40] and released
with Linux 5.13 in 2021.

8.5 Maintenance and contributions

Upstreaming a major change like Landlock to the Linux kernel is only
one of the first steps to make it widely available. Becoming maintainer
implies a responsibility to lead the development of a part of Linux, to
fix issues, to add documentation, to improve quality, and to mentor con-
tributors. To educate kernel maintainers and Linux users about Landlock,
we gave conference talks and workshops [26–32, 34–37]. To make kernel
development and testing easier, especially for newcomers, we created and
shared a set of standalone tools. 16 Because following development on

16 https://github.com/landlock-lsm/landlock-test-tools

https://github.com/landlock-lsm/landlock-test-tools


M. Salaün 29

mailing lists might be a daunting task, we are maintaining a set of tasks
on GitHub. 17 We also write newsletters to track updates, and we maintain
a set of libraries to make it easier and safer for users to use Landlock.

As explained in section 6.3, the first version of Landlock was an MVP.
We are now working on new features to improve the state of sandboxing
on Linux and protect as many users as possible.

9 Adoption

Making Landlock broadly available on Linux systems is a prerequisite
to protect as many users as possible.

9.1 Linux distributions and container runtimes

Because Landlock is an LSM, it can be enabled or disabled at boot
time with a kernel command line parameter. Even if there is a default
command line parameter in the mainline kernel, it is often overloaded by
Linux distributions. The two steps to enable it in a Linux distribution
were then to enable it in the kernel build configuration and the kernel
boot configuration. The build configuration was the easy part to ask, but
the default boot command line was a bit more challenging.

Landlock is currently available with the most generic Linux distribu-
tions: Ubuntu 22.04 LTS, Fedora 35, Arch Linux, Alpine Linux, Gentoo,
Debian Sid, chromeOS, Azure Linux (CBL-Mariner), and WSL2.

Another unexpected challenge was to make the Landlock system calls
available to processes running in container runtimes. Indeed, most of them
now filter syscalls with seccomp. It was then required to propose the three
new Landlock syscalls to be allowed. Landlock is currently supported
within the containers of the following runtimes: Docker (Moby), Podman,
runc (Open Container Initiative), LXC, and Incus.

9.2 Development tools, libraries, and documentation

As a new kernel feature, it was required to update some developer
tools such as strace which requires up to date syscall signatures and other
kernel interfaces’ information.

To make Landlock easier to use, we developed one library for
Rust [35] 18 and another for Go [20].19 The community has been actively
developing support for other languages: Haskell, Python, and C.

17 https://github.com/landlock-lsm/linux/issues
18 https://github.com/landlock-lsm/rust-landlock
19 https://github.com/landlock-lsm/go-landlock

https://github.com/landlock-lsm/linux/issues
https://github.com/landlock-lsm/rust-landlock
https://github.com/landlock-lsm/go-landlock


30 Landlock

Finally, for a new kernel feature to be developer-friendly, good doc-
umentation is required. The main Linux documentation is stored and
maintained along the kernel source code [33]. However, the man pages are
a separate project with a different documentation file format, and we also
need to populate the Landlock-related pages and keep them up to date.

9.3 Sandboxed software

Landlock is still a new kernel security feature but there are already
early adopters leveraging it. As for any open-source component, it is
not easy to identify users, but it is still possible to get some clues for
open-source communities.

Open-source and public-facing products include chromeOS, Nomad,
and Polkadot. Microsoft is also using Landlock to protect Azure. Excluding
developer tools and libraries (see section 9.2), a few open-source software
programs support Landlock, such as Suricata [17], sslh, and XZ Utils.
There is also an ongoing effort to add Landlock support to JavaScript,
TypeScript, and WebAssembly runtimes to sandbox their execution [1–3].
Another initiative is to bring Landlock’s capabilities to the Open Container
Initiative’s specification and runtime (runc), and PAM. Finally, most use
cases may use Landlock with sandbox managers such as Minijail or Firejail,
which boosts adoption and use cases.

Even if Landlock is designed for security, its standalone features can
give rise to unexpected use cases such as hermetic compilations with
landlock-make [41].

This list is probably the tip of the iceberg, and we will need to wait
for more widely available sandbox tools to get a better idea of Landlock’s
users. Moreover, critical features were needed, and some important ones
would help for wider adoption: file reparenting for efficient filesystem use
(supported by ABI v2), file truncation to protect against file’s content
erasing (supported by ABI v3), audit support to more easily debug and
report denials,20 and an audit-only mode to get guarantees that a workflow
or a fleet will work as expected before enforcing restrictions.21

9.4 The XZ backdoor

XZ Utils is a widely used compression tool and library. In March 2024,
a backdoor was found and reported. It was introduced in February by a
new maintainer who earned this trust after more than two years of effort.

20 https://github.com/landlock-lsm/linux/issues/3
21 https://github.com/landlock-lsm/linux/issues/17

https://suricata.io/
https://github.com/yrutschle/sslh
https://tukaani.org/xz/
https://github.com/landlock-lsm/linux/issues/3
https://github.com/landlock-lsm/linux/issues/17


M. Salaün 31

Among the malicious changes, the attacker disabled Landlock’s support
for XZ Utils [12]. The sabotaged configuration check has since been fixed, 22

but this effort to stealthily disable sandboxing is a clear sign that Landlock
disturbs attackers.

10 Conclusion and future work

As the Linux sandboxing feature, Landlock can help protect users
against security vulnerabilities or malicious applications. It is designed to
fit well with embedded sandboxing but it can also create several layers of
security, following the defense in depth principle.

Landlock empowers the Linux community to protect itself with de-
fensive tools. To speed up the process of sandboxing applications, one of
the next steps is to create an easy-to-use sandboxer with flexible security
policies.

Landlock is already an efficient sandboxing mechanism with a lot
of potential. We are working on new features to improve it and new
contributors are welcome!

Acknowledgments

I would like to thank Günther, Nicolas, Praveen, and Wei for their
reviews.

References

1. Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano
Paraboschi. Hardening WASI using Landlock LSM. In USENIX Security Poster

Session, 2022. https://cs.unibg.it/seclab-papers/2022/USENIX/wasi-poster.

pdf.

2. Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano
Paraboschi. Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses. In Pro-

ceedings of the ACM Asia Conference on Computer and Communications Security.
Association for Computing Machinery, 2023. https://doi.org/10.1145/3579856.

3595799.

3. Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano
Paraboschi. NatiSand: Native Code Sandboxing for JavaScript Runtimes. In
Proceedings of the 26th International Symposium on Research in Attacks, Intrusions

and Defenses. Association for Computing Machinery, 2023. https://doi.org/10.

1145/3607199.3607233.

22 https://github.com/tukaani-project/xz/commit/f9cf4c05edd1

https://cs.unibg.it/seclab-papers/2022/USENIX/wasi-poster.pdf
https://cs.unibg.it/seclab-papers/2022/USENIX/wasi-poster.pdf
https://doi.org/10.1145/3579856.3595799
https://doi.org/10.1145/3579856.3595799
https://doi.org/10.1145/3607199.3607233
https://doi.org/10.1145/3607199.3607233
https://github.com/tukaani-project/xz/commit/f9cf4c05edd14dedfe63833f8ccbe41b55823b00


32 Landlock

4. Dionysus Blazakis. The Apple Sandbox. In Black Hat DC, 2011.
https://media.blackhat.com/bh-dc-11/Blazakis/BlackHat_DC_2011_

Blazakis_Apple_Sandbox-wp.pdf.

5. Hao Chen, David Wagner, and Drew Dean. Setuid Demystified. In 11th USENIX

Security Symposium, 2002. https://www.usenix.org/conference/11th-usenix-

security-symposium/setuid-demystified.

6. Jonathan Corbet. Controlling access to user namespaces, 2016. https://lwn.net/

Articles/673597/.

7. Jonathan Corbet. The inherent fragility of seccomp(), 2017. https://lwn.net/

Articles/738694/.

8. Jonathan Corbet. Reconsidering unprivileged BPF, 2019. https://lwn.net/

Articles/796328/.

9. Jonathan Corbet. Landlock (finally) sets sail, 2021. https://lwn.net/Articles/

859908/.

10. Jonathan Corbet. A security-module hook for user-namespace creation, 2022.
https://lwn.net/Articles/903580/.

11. Jonathan Corbet. Some 6.7 development statistics, 2024. https://lwn.net/

Articles/956765/.

12. Russ Cox. Timeline of the xz open source attack, 2024. https://research.swtch.

com/xz-timeline.

13. FreeBSD. libcasper. https://man.freebsd.org/cgi/man.cgi?query=libcasper&

sektion=3.

14. Tal Garfinkel. Traps and Pitfalls: Practical Problems in System
Call Interposition Based Security Tools. In NDSS Symposium, 2003.
https://www.ndss-symposium.org/ndss2003/traps-and-pitfalls-practical-

problems-system-call-interposition-based-security-tools/.

15. The kernel development community. Working with the kernel development commu-
nity, 2024. https://docs.kernel.org/process/.

16. Greg Kroah-Hartman. Patches carved into stone tablets. In Kernel

Recipes, 2016. https://kernel-recipes.org/en/2016/talks/patches-carved-

into-stone-tablets/.

17. Eric Leblond. Attaques de type Supply Chain sur Suricata. In SSTIC, 2023. https:

//www.sstic.org/2023/presentation/attaque_supply_chain_suricata/.

18. Microsoft. AppContainer isolation, 2023. https://learn.microsoft.com/en-us/

windows/win32/secauthz/appcontainer-isolation.

19. Microsoft. Microsoft Defender Application Guard overview, 2023.
https://learn.microsoft.com/en-us/windows/security/application-

security/application-isolation/microsoft-defender-application-

guard/md-app-guard-overview.

20. Günther Noack. Why use Go-Landlock for sandboxing? In Zurich Gophers Meetup,
2022. https://blog.gnoack.org/post/go-landlock-talk/.

21. Günther Noack. Landlock: Best Effort mode, 2023. https://blog.gnoack.org/

post/landlock-best-effort/.

22. Committee on National Security Systems (CNSS). CNSS Glossary, 2022. https:

//www.cnss.gov/CNSS/issuances/Instructions.cfm.

https://media.blackhat.com/bh-dc-11/Blazakis/BlackHat_DC_2011_Blazakis_Apple_Sandbox-wp.pdf
https://media.blackhat.com/bh-dc-11/Blazakis/BlackHat_DC_2011_Blazakis_Apple_Sandbox-wp.pdf
https://www.usenix.org/conference/11th-usenix-security-symposium/setuid-demystified
https://www.usenix.org/conference/11th-usenix-security-symposium/setuid-demystified
https://lwn.net/Articles/673597/
https://lwn.net/Articles/673597/
https://lwn.net/Articles/738694/
https://lwn.net/Articles/738694/
https://lwn.net/Articles/796328/
https://lwn.net/Articles/796328/
https://lwn.net/Articles/859908/
https://lwn.net/Articles/859908/
https://lwn.net/Articles/903580/
https://lwn.net/Articles/956765/
https://lwn.net/Articles/956765/
https://research.swtch.com/xz-timeline
https://research.swtch.com/xz-timeline
https://man.freebsd.org/cgi/man.cgi?query=libcasper&sektion=3
https://man.freebsd.org/cgi/man.cgi?query=libcasper&sektion=3
https://www.ndss-symposium.org/ndss2003/traps-and-pitfalls-practical-problems-system-call-interposition-based-security-tools/
https://www.ndss-symposium.org/ndss2003/traps-and-pitfalls-practical-problems-system-call-interposition-based-security-tools/
https://docs.kernel.org/process/
https://kernel-recipes.org/en/2016/talks/patches-carved-into-stone-tablets/
https://kernel-recipes.org/en/2016/talks/patches-carved-into-stone-tablets/
https://www.sstic.org/2023/presentation/attaque_supply_chain_suricata/
https://www.sstic.org/2023/presentation/attaque_supply_chain_suricata/
https://learn.microsoft.com/en-us/windows/win32/secauthz/appcontainer-isolation
https://learn.microsoft.com/en-us/windows/win32/secauthz/appcontainer-isolation
https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/microsoft-defender-application-guard/md-app-guard-overview
https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/microsoft-defender-application-guard/md-app-guard-overview
https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/microsoft-defender-application-guard/md-app-guard-overview
https://blog.gnoack.org/post/go-landlock-talk/
https://blog.gnoack.org/post/landlock-best-effort/
https://blog.gnoack.org/post/landlock-best-effort/
https://www.cnss.gov/CNSS/issuances/Instructions.cfm
https://www.cnss.gov/CNSS/issuances/Instructions.cfm


M. Salaün 33

23. OpenBSD. pledge - restrict system operations. https://man.openbsd.org/pledge.

2.

24. OpenBSD. unveil - unveil parts of a restricted filesystem view. https://man.

openbsd.org/unveil.2.

25. Mickaël Salaün. [RFC v1 00/17] seccomp-object: From attack surface reduction to
sandboxing, 2016. https://lore.kernel.org/r/1458784008-16277-1-git-send-

email-mic@digikod.net.

26. Mickaël Salaün. Landlock : cloisonnement programmable non privilégié. In SSTIC,
2017. https://www.sstic.org/2017/presentation/landlock/.

27. Mickaël Salaün. Landlock LSM: Toward Unprivileged Sandboxing. In Linux

Security Summit North America, 2017. https://sched.co/BKOm.

28. Mickaël Salaün. File access-control per container with Landlock. In FOSDEM, 2018.
https://archive.fosdem.org/2018/schedule/event/containers_landlock/.

29. Mickaël Salaün. How to Safely Restrict Access to Files in a Programmatic Way
with Landlock? In Linux Security Summit North America, 2018. https://lssna18.

sched.com/event/FLYR.

30. Mickaël Salaün. Internals of Landlock: a new kind of Linux Security Module
leveraging eBPF. In Pass the Salt, 2018. https://2018.pass-the-salt.org/

programme/#landlock.

31. Mickaël Salaün. Deep Dive into Landlock Internals. In Linux Security Summit,
2021. https://sched.co/11MXq.

32. Mickaël Salaün. Sandboxing Applications with Landlock. In Open Source Summit,
2021. https://osselc21.sched.com/event/lAVl.

33. Mickaël Salaün. Landlock user space documentation, 2022. https://docs.kernel.

org/userspace-api/landlock.html.

34. Mickaël Salaün. Update on Landlock: Lifting the File Reparenting Limits and
Supporting Network Rules. In Linux Security Summit North America, 2022. https:

//sched.co/11MXq.

35. Mickaël Salaün. Backward and forward compatibility for security features. In FOS-

DEM, 2023. https://fosdem.org/2023/schedule/event/rust_backward_and_

forward_compatibility_for_security_features/.

36. Mickaël Salaün. Landlock Workshop: Sandboxing Application for Fun and Protec-
tion. In Linux Security Summit Europe, 2023. https://sched.co/1OLAi.

37. Mickaël Salaün. Update on Landlock: Audit, Debugging and Metrics. In Ker-

nel Recipes, 2023. https://kernel-recipes.org/en/2023/update-on-landlock-

audit-debugging-and-metrics/.

38. Casey Schaufler and John Johansen. Namespacing and Stacking the LSM. In
Linux Plumbers Conference, 2017. https://blog.linuxplumbersconf.org/2017/

ocw/sessions/4768.html.

39. KP Singh. Kernel Runtime Security Instrumentation. In Linux Security Summit

Europe, 2019. https://sched.co/Tyn7.

40. Linus Torvalds. Pull Landlock LSM, 2021. https://git.kernel.org/torvalds/

c/17ae69aba89dbfa2139b7f8024b757ab3cc42f59.

41. Justine Tunney. Using Landlock to Sandbox GNU Make, 2022. https://justine.

lol/make/.

https://man.openbsd.org/pledge.2
https://man.openbsd.org/pledge.2
https://man.openbsd.org/unveil.2
https://man.openbsd.org/unveil.2
https://lore.kernel.org/r/1458784008-16277-1-git-send-email-mic@digikod.net
https://lore.kernel.org/r/1458784008-16277-1-git-send-email-mic@digikod.net
https://www.sstic.org/2017/presentation/landlock/
https://sched.co/BKOm
https://archive.fosdem.org/2018/schedule/event/containers_landlock/
https://lssna18.sched.com/event/FLYR
https://lssna18.sched.com/event/FLYR
https://2018.pass-the-salt.org/programme/#landlock
https://2018.pass-the-salt.org/programme/#landlock
https://sched.co/11MXq
https://osselc21.sched.com/event/lAVl
https://docs.kernel.org/userspace-api/landlock.html
https://docs.kernel.org/userspace-api/landlock.html
https://sched.co/11MXq
https://sched.co/11MXq
https://fosdem.org/2023/schedule/event/rust_backward_and_forward_compatibility_for_security_features/
https://fosdem.org/2023/schedule/event/rust_backward_and_forward_compatibility_for_security_features/
https://sched.co/1OLAi
https://kernel-recipes.org/en/2023/update-on-landlock-audit-debugging-and-metrics/
https://kernel-recipes.org/en/2023/update-on-landlock-audit-debugging-and-metrics/
https://blog.linuxplumbersconf.org/2017/ocw/sessions/4768.html
https://blog.linuxplumbersconf.org/2017/ocw/sessions/4768.html
https://sched.co/Tyn7
https://git.kernel.org/torvalds/c/17ae69aba89dbfa2139b7f8024b757ab3cc42f59
https://git.kernel.org/torvalds/c/17ae69aba89dbfa2139b7f8024b757ab3cc42f59
https://justine.lol/make/
https://justine.lol/make/


34 Landlock

42. Robert Watson, Wayne Morrison, Chris Vance, and Brian Feldman.
The TrustedBSD MAC Framework: Extensible Kernel Access Control for
FreeBSD 5.0. In USENIX Annual Technical Conference, FREENIX Track,
2003. https://www.usenix.org/legacy/events/usenix03/tech/freenix03/

full_papers/watson/watson.pdf.

43. Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway.
Capsicum: practical capabilities for UNIX. In Proceedings of the 19th USENIX

Security Symposium, 2010. http://www.trustedbsd.org/2010usenix-security-

capsicum-website.pdf.

https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/watson/watson.pdf
https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/watson/watson.pdf
http://www.trustedbsd.org/2010usenix-security-capsicum-website.pdf
http://www.trustedbsd.org/2010usenix-security-capsicum-website.pdf

	Landlock

