
Getting ahead of the schedule: manipulating the

Kubernetes scheduler to perform lateral

movement in a cluster

Paul Viossat
paulv@padok.fr

Padok

Abstract. In this paper, we describe the Kubernetes scheduler frame-
work and how it can be used to isolate workloads at the node level in a
Kubernetes cluster. We introduce the concept of domain of feasibility to
analyze the scheduling decisions regarding isolation. We then explore how
an attacker who has compromised a node can use the kubelet account
to manipulate the scheduler to perform lateral movement by attracting
pods to its node or sending vulnerable pods to other nodes. We provide
a general methodology to perform these attacks and describe some tech-
niques using kubelet account and more privileged permissions such as
patching pod objects.

1 Introduction

With the growing popularity of containerized applications, Kubernetes
has become the de facto standard for container orchestration. While gaining
in popularity, it has also become a target of choice for attackers, especially
crypto miners that exploit misconfigured clusters to take advantage of the
scalable computing resources managed by Kubernetes clusters [16].

Progress was made in securing Kubernetes clusters to meet the require-
ments of production environments. These improvements include changes
in the Kubernetes default configuration, the introduction of new security
features but also the development of an ecosystem of security tools for
Kubernetes. We can mention Kyverno 1 for policy enforcement or Falco 2

for runtime threat detection.
In 2020, Microsoft released a threat matrix for Kubernetes and updated

it recently [15]. It intends to provide a similar framework to the MITRE
ATT&CK 3 for Kubernetes and covers multiple steps of the kill chain
such as initial access, privilege escalation, credential access, or lateral
movement.

1 https://kyverno.io/
2 https://falco.org/
3 https://attack.mitre.org/

https://kyverno.io/
https://falco.org/
https://attack.mitre.org/

2 Getting ahead of the schedule: lateral movement in Kubernetes

Especially, it includes several techniques that can be used to compro-
mise the host node of a container. These techniques are referred to as
container escape and are well documented in offensive security resources
on the internet [13].

Most container escape techniques are based on pod’s misconfigura-
tions or kernel vulnerabilities that can be exploited within a container.
These vulnerabilities can be tackled by enforcing security policies or using
sandboxing technologies such as gVisor 4 or Kata containers.5 However,
the risks induced by this class of vulnerabilities still justify their study to
achieve a comprehensive defense-in-depth strategy. Indeed, having access
to the host node implies having access to all service accounts used by pods
running on the node, which can be a powerful way to escalate privileges
in a Kubernetes cluster.

At Blackhat USA 2022, Yuval Avrahami and Shaul Ben Hai presented
their work on trampolines pods to try to answer the question: is container
escape equivalent to cluster compromise ? They highlighted the fact that
many clusters are vulnerable to privilege escalation after a node compro-
mise, mostly because of the privileges granted to service accounts used by
pods running on the node, acting as trampolines to higher privileges [17] .

Datadog recently published a tool called Kubehound [2] with ambitions
to be the Bloodhound of Kubernetes. Their tool allows us to find complex
paths to compromise a cluster and confirms the trend toward the search
for guarantees of in-depth security in Kubernetes clusters.

However, recent work still leaves a question unanswered: can we know
all the service accounts that can be compromised from a given node ? Are
we only relying on chance to find a vulnerable service account on a node
we have compromised ?

In this article, we explore how pods are scheduled in a Kubernetes
cluster and how we can influence the way they are assigned to nodes. Our
analysis is based largely on the Kubernetes source code as it proves to be
one of the best ways to understand the Kubernetes machinery.

2 Kubernetes basic concepts

Before diving into the Kubernetes scheduler, we introduce some ba-
sic concepts of Kubernetes that are useful to understand the rest of
the article. The explanations provided are mostly from the Kubernetes
documentation [4] and the source code of Kubernetes [12].

4 https://gvisor.dev/
5 https://katacontainers.io/

https://gvisor.dev/
https://katacontainers.io/

P. Viossat 3

2.1 API

The kube-apiserver process is the core component of Kubernetes.
Communication between various Kubernetes clients and components oc-
curs through the REST API it exposes. It manages entities, known as
resources or objects in the Kubernetes context (we’ll see several examples
of objects in the next section). To store persistent objects, the API server
relies on a key-value database implemented using etcd [11].

Users can define and update the cluster’s desired state by specifying
these different objects through the Kubernetes API. Objects also represent
the current state of the cluster (Pod’s status with PodStatus subresource,
Node status with NodeStatus, etc.).

Object specifications are not static and may be updated by users or
by controllers (controllers are automated processes that we describe in
section 2.4).

In Kubernetes, all the necessary information to operate a cluster is
accessible on the API. Controllers and users use the same API: there
is no such thing as a private API in Kubernetes. Some routes are less
documented than others though.

One way to interact with the Kubernetes API is through the kubectl

command-line client, which uses HTTP REST calls behind the scenes to
interact with the API.

For example, to retrieve the list of Node objects in a Kubernetes
cluster, we can issue the following command (by setting the verbosity level
to 7, we’ll see the details of the HTTP call made):

Listing 1: Standard output

1 kubectl get nodes -v 7

2

3 [loader.go:373] Config loaded from file: /home/pvio/.kube/config

4 [round_trippers.go:463] GET

https://127.0.0.1:39417/api/v1/nodes?limit=500→֒

5 [round_trippers.go:469] Request Headers:

6 [round_trippers.go:473] User-Agent: kubectl/v1.27.10

(linux/amd64) kubernetes/0fa26ae→֒

7 [round_trippers.go:473] Accept: application/json;...

8 [round_trippers.go:574] Response Status: 200 OK in 9 milliseconds

9

10 NAME STATUS ROLES AGE VERSION

11 kind-control-plane Ready control-plane 7d v1.27.3

12 kind-worker Ready <none> 7d v1.27.3

4 Getting ahead of the schedule: lateral movement in Kubernetes

2.2 Basic objects

In this section, we introduce some fundamental Kubernetes objects
that help understand the rest of the paper. In practice, Kubernetes objects
are often defined in YAML files and applied to the API server using
the kubectl apply command. We will show some examples of these
representations later in this paper.

Namespace: this type of object is used to logically group Kubernetes
resources. Not all object types are necessarily part of a namespace and some
can be defined at cluster level (Namespace objects for example, otherwise
we would have quite a chicken-and-egg problem). In the following, we will
refer to objects that need to be attached to a namespace as namespaced

objects. There is always a default namespace in a Kubernetes cluster,
where namespaced objects for which no namespace has been specified are
created.

Node: cluster-wide object which is the API representation of a cluster
node. Its NodeStatus subresource contains information such as the node’s
allocatable resources (CPU, memory, etc.).

Pod: namespaced object which defines a group of containers necessarily
running on the same node and sharing common resources (for linux
containers, the network namespace will be shared between the different
containers in a pod, for example). In practice, a user will very rarely create
a pod on the Kubernetes API. In fact, it is often an anti-pattern [8], as the
naked pods thus created cannot be rescheduled in the event of node failure.
It’s preferable to use higher-level objects (Deployment, DaemonSet, Job,
etc.), which will handle the creation of Pod objects.

Deployment: namespaced object that can control how many replica in-
stances of a Pod should be running in the cluster and how they should be
restarted in case of an update. In the background, it creates a ReplicaSet

to handle multiple replicas of a pod.

DaemonSet: namespaced object that defines Pod objects that should be
run on every (or some) node without controlling the number of replicas
created (it will depend on the number of nodes).

P. Viossat 5

ServiceAccount: namespaced object that represents a user managed by
Kubernetes. A pod always has a service account. If a pod specification
does not define a service account, the default service account from its
namespace is used (a namespace always has a default service account).

Role: namespaced object that defines permissions on the Kubernetes API.
The permissions are applied to resources in the same namespace as the
Role. A role can be attached to a service account using a RoleBinding

object.

ClusterRole: cluster-wide object that defines permissions on the Ku-
bernetes API. A ClusterRole can be attached to a ServiceAccount

using a RoleBinding or a ClusterRoleBinding object. When using
RoleBinding, the rights are effective only on objects in the namespace
of the RoleBinding while with ClusterRoleBinding the privileges are
obtained on objects in every namespace.

2.3 Users and groups

There are two kinds of users in Kubernetes: service accounts managed
by Kubernetes and regular users. Unlike service accounts we presented
earlier, regular users are not Kubernetes objects. Instead, they are defined
by trusted authorities such as the cluster’s certificate authority or OIDC
provider [5].

The Kubernetes API uses the authentication material attached to
the request (a certificate or a token) to authenticate and authorize the
request. Once authenticated, a username, and optionally a group, are
extracted from the request and used to determine if the request should be
authorized.

In particular, when using RBAC (Role-Based Access Control) autho-
rization mode, Roles or ClusterRoles can be bound to users or groups
to define the permissions they have on Kubernetes resources. An example
of role binding to a user is given in listing 2.

Other authorization modes are built-in in Kubernetes, such as Node

authorizer that will be discussed in section 4.2.

2.4 Controllers

Controllers are pieces of software that implement control loops that
watch Kubernetes API objects. Control loops are non-terminating loops

6 Getting ahead of the schedule: lateral movement in Kubernetes

Listing 2: Role binding example

1 apiVersion: rbac.authorization.k8s.io/v1

2 kind: RoleBinding

3 metadata:

4 name: reader

5 namespace: sstic

6 subjects:

7 - kind: User

8 name: alice

9 apiGroup: rbac.authorization.k8s.io

10 roleRef:

11 kind: ClusterRole

12 name: reader

13 apiGroup: rbac.authorization.k8s.io

that continuously reconcile the current state of the cluster with the desired
state [6].

For instance, the ReplicaSet controller watches the API for ReplicaSet

objects and ensures that the number of replicas specified in the ReplicaSet

object matches the number of pods running in the cluster.

Controllers are the core of the Kubernetes machinery and are respon-
sible for the self-healing capabilities of the platform. Many of them are
built-in in the kube-controller-manager process [7], which is responsible
for running the controllers in the Kubernetes control plane. They can
also be implemented outside the control plane, either running on pods or
external systems.

Fig. 1. Kubernetes controller pattern

P. Viossat 7

Controllers can manage external resources (i.e. without interacting
with the API server), such as cloud resources or container runtimes. For
example, the kubelet process is a controller that manages the container
runtime on each node. We will discuss further this controller in the
section 4.

2.5 Control Plane

The control plane is a set of processes that manage the Kubernetes
cluster. They can run on a node of the cluster or on external systems.

In managed Kubernetes services such as EKS (AWS), AKS (Azure), or
GKE (Google Cloud), the control plane is managed by the cloud provider
and is not accessible to the end user other than through the Kubernetes
API.

The control plane contains the following components:

— API server: the entry point for the Kubernetes API.
— Scheduler: the component that assigns nodes to pods (we will

describe this component later).
— Controller manager: the component that runs some built-in

controllers.
— etcd: the key-value store used to store the cluster’s state.

They may have other components running on the control plane, such
as the cloud-controller-manager, which manages cloud resources but
they will not be discussed in this paper.

Finally, in figure 2, we offer a simplified view of a Kubernetes cluster
with the control plane and the nodes.

Fig. 2. Simplified Kubernetes cluster architecture

8 Getting ahead of the schedule: lateral movement in Kubernetes

3 Kuberenetes Scheduler

3.1 Overview

It is technically incorrect to talk about the Kubernetes scheduler.
Kubernetes is an open platform and schedulers are no exception. It is
therefore possible to implement your scheduler and use it to allocate nodes
to pods in a cluster.

In this section, we will discuss the default scheduler implemented in
the kube-scheduler process that is used in most deployments. Indeed,
according to their documentation, major cloud provider such as AWS are
using the default scheduler or a similar implementation on their managed
Kubernetes control planes [14].

When a Pod is created on the Kubernetes API, it generally does
not have an assigned node, unless a node is explicitly specified with
the spec.nodeName attribute in the pod specification. The role of the
scheduler is to assign a node to the pod, based on the pod’s requirements
and the current state of the cluster. In the end, the scheduler is a controller
that watches the API server for unscheduled pods and assigns them to
nodes.

3.2 Scheduler framework

The default implementation of the Kubernetes scheduler is an open
framework that allows for custom scheduling policies. The framework de-
fines stages in a pod’s scheduling cycle for which logic can be implemented
within plugins.

We can distinguish three main stages in the scheduling process of a
pod:

— Filtering: Searching for feasible nodes, i.e. nodes that meet the
conditions for executing the pod.

— Scoring: Ranking the nodes among the feasible nodes to find the
most suitable node.

— Binding: Updating the pod to assign it to a node.
Other intermediate phases exist in the scheduler framework but in the

following, we will only be interested in the three phases mentioned above,
which will play a predominant role in the scheduler’s operation.

All the phases are shown in the figure 3, taken from the Kubernetes
documentation [10].

Plugins are activated and configured via scheduling profiles, defined
in the scheduler configuration. At the time of writing, 21 plugins are
activated by default in the Kubernetes scheduler.

P. Viossat 9

Fig. 3. Scheduling framework extension points

In the following, we will consider the default configuration of the
Kubernetes scheduler.

3.3 Filtering

The filtering phase enables the scheduler to determine which nodes
are feasible for a pod, i.e. which nodes meet the conditions for executing
the pod. These conditions are expressed in the various plugins involved in
the filtering phase.

Each plugin returns a list of nodes that meet the conditions it checks.
The scheduler then computes the intersection of these lists to determine
the nodes that are feasible for the pod. If the list is empty, the pod remains
unscheduled until a node becomes feasible.

In practice, plugins involved in the filtering phase define a Filter

function with the signature defined in listing 3. The function takes as
arguments the pod to be scheduled, the node to be evaluated, and the
current state of the scheduling cycle.

In particular, the function is called for each node to be evaluated by
the scheduler. The pre-filter phase in the scheduler framework allows the
computation based on the pod’s specification before evaluating each node
to avoid unnecessary computation.

The default scheduler plugins checks various conditions to determine
if a node is feasible for a pod. We will discuss some in this paper (mainly
TaintToleration and NodeAffinity) but the full list 6 can be retrieved

6 https://kubernetes.io/docs/reference/scheduling/config/#scheduling-

plugins

https://kubernetes.io/docs/reference/scheduling/config/#scheduling-plugins
https://kubernetes.io/docs/reference/scheduling/config/#scheduling-plugins

10 Getting ahead of the schedule: lateral movement in Kubernetes

Listing 3: Filter function signature

1 func (pl *NodeAffinity) Filter(

2 ctx context.Context,

3 state *framework.CycleState,

4 pod *v1.Pod,

5 nodeInfo *framework.NodeInfo)

6 *framework.Status

in the Kubernetes documentation and their source code is available in the
Kubernetes repository in path pkg/scheduler/framework/plugins.7

Case of large clusters In a cluster with more than 50 nodes, the
scheduler will not necessarily evaluate all nodes during a scheduling cy-
cle [3]. The scheduler will evaluate the proportion of nodes defined by
the percentageOfNodesToScore attribute of the scheduler configuration,
which if not defined, will follow a linear function that will set the number
of nodes evaluated between 50% for a cluster of 100 nodes and 10% for a
cluster of 5000 nodes. Note that a hard-coded minimum of 50 nodes will al-
ways be evaluated, whatever the value of the percentageOfNodesToScore

attribute specified.

The scheduler iterates over the nodes, remembering the last nodes
evaluated. So, when the next scheduling cycle comes around, the 50 nodes
evaluated will be selected starting from the last node evaluated in the
scheduler’s iteration order, ensuring that all nodes are evenly evaluated
for pod scheduling.

For the rest of the article, we will consider ourselves to be in a case
with less than 50 nodes. We should be able to reproduce the results in a
larger cluster by re-iterating attacks until our nodes are considered by the
scheduler.

3.4 Scoring

During the scoring phase, the scheduler ranks the nodes that are
feasible for the pod to find the most suitable node. Each plugin involved in
the scoring phase implements a Score function with the signature defined
in listing 4.

7 https://github.com/kubernetes/kubernetes/tree/master/pkg/scheduler/

framework/plugins

https://github.com/kubernetes/kubernetes/tree/master/pkg/scheduler/framework/plugins
https://github.com/kubernetes/kubernetes/tree/master/pkg/scheduler/framework/plugins

P. Viossat 11

The function returns a score for each node, ranging from 0 to 100, which
is then multiplied by the weight of the plugin (defined in the scheduler
configuration) to determine the final score of the node. The node with the
highest score is then selected to host the pod.

Listing 4: Score function signature

1 func (pl *ImageLocality) Score(

2 ctx context.Context,

3 state *framework.CycleState,

4 pod *v1.Pod,

5 nodeName string)

6 (int64, *framework.Status)

In section 7.2, we will discuss some of the scoring plugins but the full
list can be retrieved in the Kubernetes documentation.

3.5 Binding

The binding phase is also implemented using plugins but which have
the distinctive feature that only one plugin can manage the binding phase
of a pod: once a plugin has chosen to manage a given pod, all other plugins
are skipped. The order in which plugins are called is set by the scheduler’s
configuration.

By default, the scheduler uses only the DefaultBinder plugin to bind
pods to nodes. This plugin calls the Kubernetes API to create a Binding

resource, which is a subresource of Pod.

The Binding resource is not a persistent object but its creation updates
the pod’s spec.nodeName attribute, which is the attribute that defines
the node to which the pod is assigned.

Binding subresource can only be created and the pod’s spec.nodeName

attribute is immutable and cannot be updated once it has been set.
Therefore, a pod cannot be rescheduled to another node without being
deleted and recreated.

That is why creating naked pods is considered an anti-pattern in
Kubernetes. Indeed, if a node is failing, pods, once evicted, will not be
rescheduled on another node. On the contrary, if pods are managed by
higher-level objects such as ReplicaSets, the associated controller will
detect the eviction of pods from a failing node and create new instances
of pods, which can then be scheduled on other nodes.

12 Getting ahead of the schedule: lateral movement in Kubernetes

4 Node identities

4.1 Kubelet account

The kubelet is an agent that runs on each node in the cluster. It
implements the controller pattern to manage the containers running on a
node. It will ensure that the containers defined in the pod specifications
on the Kubernetes API are running and will restart them if they fail.

To authenticate to the Kubernetes API, the kubelet must provide valid
user credentials. Usually, it uses a certificate that is signed by the cluster’s
certificate authority. In listing 5, we provide an example of a certificate of
a kubelet account on GKE.

More generally, the kubelet authentication method is defined in the
kubeconfig file used by the kubelet process. Usually, it can be found in the
path /var/lib/kubelet/kubeconfig.

There may be a bootstrap process that allows the kubelet to authenti-
cate to the API server before having a certificate to request one. It will
depend on the setup process of the cluster and is out of the scope of this
paper.

Listing 5: Kubelet certificate

1 Certificate:

2 Data:

3 Version: 3 (0x2)

4 Serial Number:

5 12:2e:49:58:b4:01:0b:37:17:2e:bf:5d:19:4c:f7:01

6 Signature Algorithm: sha256WithRSAEncryption

7 Issuer: CN = c38d3a55-d7a4-466e-be0f-82c0129ed034

8 Validity

9 Not Before: Apr 11 08:03:01 2024 GMT

10 Not After : Apr 11 08:05:01 2025 GMT

11 Subject: O = system:nodes, CN =

system:node:gke-cluster-1-default-pool-abc3133-37ds→֒

In the example in listing 5, the certificate’s subject is used by the API
server to determine the user associated with the request and its group, as
described in section 2.3. The kubelet account is part of the system:nodes

group, which is a built-in group in Kubernetes. This group is used to define
the permissions of the kubelet account in the Node authorizer, which we
will discuss in the next section.

P. Viossat 13

4.2 Node authorization

To authorize requests from nodes, it is possible to use the Node au-

thorizer, which is a built-in authorization mode in Kubernetes. It can
be enabled on the API server with the –authorization-mode=Node

flag. Once activated, it will handle authorization requests for users
that are part of the system:nodes group ,with a username in the form
system:node:<nodeName>.

By analyzing the Node authorizer source code, we can determine which
requests can be performed by a kubelet. We give an extract of the code
of the Authorize function in listing 6. In particular, we can see that the
kubelet account can perform actions on several resources related to Nodes

(CsiNode, NodeLease, etc.).

Listing 6: Extract of Authorize function of Node authorizer

1 // subdivide access to specific resources

2 if attrs.IsResourceRequest() {

3 requestResource := schema.GroupResource{

4 Group: attrs.GetAPIGroup(), Resource: attrs.GetResource()}

5 switch requestResource {

6 case secretResource:

7 return r.authorizeReadNamespacedObject(nodeName,

secretVertexType, attrs)→֒

8 case svcAcctResource:

9 return r.authorizeCreateToken(nodeName,

serviceAccountVertexType, attrs)→֒

10 case leaseResource:

11 return r.authorizeLease(nodeName, attrs)

12 case csiNodeResource:

13 return r.authorizeCSINode(nodeName, attrs)

14 ... // we removed some resources for brevity

15 }

16 }

17 // Access to other resources is not subdivided, so just evaluate

18 // against the statically defined node rules

19 if rbac.RulesAllow(attrs, r.nodeRules...) {

20 return authorizer.DecisionAllow, "" , nil

21 }

If we take a closer look at the permissions granted to ServiceAccount

resources, we can see that the kubelet account can create tokens for service
accounts if the authorizeCreateToken function (line 13 in listing 6)
evaluate to true. In a regular pod starting process, it allows the kubelet to
create a token for the service account associated with the pod and mount

14 Getting ahead of the schedule: lateral movement in Kubernetes

it in the pod’s filesystem if required. The tokens then may be used to
authenticate to the Kubernetes API as the service account.

The authorizeCreateToken function will evaluate to true if the ser-
vice account is used by a pod that is bound to the node the kubelet
is running on. Internally, the Node authorizer builds a graph of re-
lationships between Nodes, Pods, ServiceAccounts, etc., and checks
for an existing relationship between objects. We give an extract of the
authorizeCreateToken function in listing 7.

A relationship between a pod and a node is created when the
spec.nodeName attribute of the Pod object is set to the Node name
(this happens when a pod is bound to a node by the Kubernetes sched-
uler). ServiceAccount objects are linked to Pods through the Pods’s
serviceAccountName attribute.

Listing 7: authorizeCreateToken function

1 // authorizeCreateToken authorizes "create" requests to

serviceaccounts 'token'→֒

2 // subresource of pods running on a node

3 func (r *NodeAuthorizer) authorizeCreateToken(nodeName string,

startingType vertexType, attrs authorizer.Attributes)

(authorizer.Decision, string, error) {

→֒

→֒

4 ... // we removed some code for brevity

5 ok, err := r.hasPathFrom(nodeName, startingType,

attrs.GetNamespace(), attrs.GetName())→֒

6 if err != nil {

7 klog.V(2).Infof("NODE DENY: %v" , err)

8 return authorizer.DecisionNoOpinion, fmt.Sprintf("no

relationship found between node '%s' and this object" ,

nodeName), nil

→֒

→֒

9 }

10 if !ok {

11 klog.V(2).Infof("NODE DENY: '%s' %#v" , nodeName, attrs)

12 return authorizer.DecisionNoOpinion, fmt.Sprintf("no

relationship found between node '%s' and this object" ,

nodeName), nil

→֒

→֒

13 }

14 return authorizer.DecisionAllow, "" , nil

15 }

Therefore, once a node is compromised, an attacker can request an
access token to authenticate to the Kubernetes API as any service account
used by a pod bound to the node. As an attacker, being able to bind a
pod to a compromised node is a powerful way to escalate privileges in a
Kubernetes cluster.

P. Viossat 15

4.3 NodeRestriction admission plugin

The Authorize function also refers to statically defined RBAC rules
which are hardcoded in Kubernetes source code.8 The listing 8 shows the
rules that are applied to Pod and Node resources for the kubelet account in
this static rule set. In particular, we can see that, by default, the kubelet
account has extensive permissions on Node and Pod resources.

Listing 8: Static kubelet account RBAC rules

1 // Nodes can register Node API objects and report status.

2 // Use the NodeRestriction admission plugin to limit a node

3 // to creating/updating its own API object.

4 rbacv1helpers.NewRule("create" , "get" , "list" ,

"watch").Groups(legacyGroup)→֒

5 .Resources("nodes").RuleOrDie(),

6 rbacv1helpers.NewRule("update" , "patch").Groups(legacyGroup)

7 .Resources("nodes/status").RuleOrDie(),

8 rbacv1helpers.NewRule("update" , "patch").Groups(legacyGroup)

9 .Resources("nodes").RuleOrDie(),

10

11 // Needed for the node to create/delete mirror pods.

12 // Use the NodeRestriction admission plugin to limit a node

13 // to creating/deleting mirror pods bound to itself.

14 rbacv1helpers.NewRule("create" , "delete").Groups(legacyGroup)

15 .Resources("pods").RuleOrDie(),

16 // Needed for the node to report status of pods it is running.

17 // Use the NodeRestriction admission plugin to limit a node

18 // to updating status of pods bound to itself.

19 rbacv1helpers.NewRule("update" , "patch").Groups(legacyGroup)

20 .Resources("pods/status").RuleOrDie(),

21 // Needed for the node to create pod evictions.

22 // Use the NodeRestriction admission plugin to limit a node

23 // to creating evictions for pods bound to itself.

24 rbacv1helpers.NewRule("create").Groups(legacyGroup)

25 .Resources("pods/eviction").RuleOrDie(),

26

Especially, the kubelet account can create Pods in any namespace.
By default, when creating Pods, it is possible to specify arbitrary
spec.serviceAccountName and spec.nodeName attributes. It means that
in a vanilla Kubernetes cluster using Node authorization mode, the kubelet
account can bind any service account to its node and therefore ask for an
access token for this account.

8 https://github.com/kubernetes/kubernetes/blob/master/plugin/pkg/auth/

authorizer/rbac/bootstrappolicy/policy.go#L110-L191

https://github.com/kubernetes/kubernetes/blob/master/plugin/pkg/auth/authorizer/rbac/bootstrappolicy/policy.go#L110-L191
https://github.com/kubernetes/kubernetes/blob/master/plugin/pkg/auth/authorizer/rbac/bootstrappolicy/policy.go#L110-L191

16 Getting ahead of the schedule: lateral movement in Kubernetes

Hopefully, the Node authorizer is not the only mechanism that can be
used to restrict the kubelet account permissions. The NodeRestriction

admission controller can be enabled to apply additional restrictions to the
kubelet account.

An admission controller is a piece of software that intercepts re-
quests to the Kubernetes API server and can modify or reject them.
The NodeRestriction admission controller is a validating admission con-
troller, which means that it can only accept or reject requests and is
invoked just before persistence as shown in figure 4.

Fig. 4. Admission controller phases (source: https://kubernetes.io/blog/2019/

03/21/a-guide-to-kubernetes-admission-controllers)

Among other restrictions, the NodeRestriction controller limits
the kubelet account to only create mirror pods which are objects
to represent pods managed by the kubelet and not by the control
plane. The NodeRestriction plugin denies mirror pods to reference
ServiceAccounts, Secrets or Configmaps that could be used to esca-
late privileges. The code in listing 9 shows how these restrictions are
implemented.

The NodeRestriction plugin will also prevent the kubelet account
from modifying other Nodes or objects (such as Pods) that are not bound
to the node it is running on. Kubelet will also be restricted when modifying
some of their own Node object attributes. We will see a concrete example
of the security provided by this functionality in the section 7.1.

4.4 Node lease

The last thing worth mentioning about the kubelet account is how it
reports its status to the Kubernetes API. There are two ways for a node

https://kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers
https://kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers

P. Viossat 17

Listing 9: Extract of admitPodCreate function in NodeRestriction
admission plugin

1 // don't allow a node to create a pod that references any other

API objects→֒

2 if pod.Spec.ServiceAccountName != "" {

3 return admission.NewForbidden(a, fmt.Errorf("node %q can not

create pods that reference a service account" , nodeName))→֒

4 }

5 hasSecrets := false

6 podutil.VisitPodSecretNames(pod, func(name string)

(shouldContinue bool) { hasSecrets = true; return false },

podutil.AllContainers)

→֒

→֒

7 if hasSecrets {

8 return admission.NewForbidden(a, fmt.Errorf("node %q can not

create pods that reference secrets" , nodeName))→֒

9 }

10 hasConfigMaps := false

11 podutil.VisitPodConfigmapNames(pod, func(name string)

(shouldContinue bool) { hasConfigMaps = true; return false },

podutil.AllContainers)

→֒

→֒

12 if hasConfigMaps {

13 return admission.NewForbidden(a, fmt.Errorf("node %q can not

create pods that reference configmaps" , nodeName))→֒

14 }

to report its status to the API server: the NodeStatus subresource and
the NodeLease object.

The NodeStatus subresource is a part of the Node object that contains
information about the node’s resources (CPU, memory, etc.) and the node
condition. The condition is a way for the node to report its health to
the API server. For example, a node can report that it is Ready or in
NetworkUnavailable condition. The node controller process will use the
reported condition to eventually add taints to the node, which will prevent
the scheduler from scheduling pods on the node.

The NodeLease object is a separate object used to detect node failures
i.e. when the node is not able to report its status to the API server. In
normal operation, the kubelet will update a NodeLease object every 10
seconds to indicate that the node is still alive. On the control plane side,
the node life cycle controller will watch the NodeLease objects and set
the node’s condition to ConditionUnknown if the lease is not updated for
a certain time (by default 40 seconds).

18 Getting ahead of the schedule: lateral movement in Kubernetes

5 Workload node isolation

As we have seen previously, if attackers can bind new pods to a
compromised node, they can possibly escalate their privileges in the
cluster by requesting tokens for service accounts used by the pods.

As defenders, we may want to have a guarantee that sensitive workloads
cannot be bound to nodes that are more likely to be compromised. A
typical use case is to isolate cluster administration tools or when designing
a multi-tenant cluster.

In practical terms, we’re looking to restrict the nodes on which pods
can be bound. The scheduler analysis we carried out previously explains
that this amounts to restricting the nodes selected during the filtering
phase of the scheduler, i.e. restricting the nodes that are feasible for a
pod.

Not all filtering plugins are well-suited to this task. In fact, some will
restrict feasible nodes based on node capacities (CPU, memory, etc.) or a
temporary state of the node. To achieve isolation of workloads on nodes,
the recommended is to use two mechanisms [1]:

— taints and tolerations implemented in the TaintToleration plugin
— node selectors and affinities implemented in the NodeAffinity

plugin
We will now take a closer look at how these mechanisms work.

5.1 Taints and tolerations

Taints and tolerations are respectively Node and Pod attributes used
by the scheduler to ensure pods are not scheduled (or preferably not
scheduled) on inappropriate Nodes.

Taints are attributes applied to Nodes that have a configurable effect
ranging from lowering the scheduling score to preventing pod execution
on the Node. They are identified by a key and optionally have a value. An
example is given in listing 10.

The taint effect will be applied by the scheduler if the pod does not
have a toleration that matches the taint. When a pod has any toleration
that matches a taint, it is said to tolerate the taint.

As of today, taints can have three effects:
— NoSchedule: this taint is considered during the filtering phase of

the scheduler to ensure that no new pod that does not tolerate the
taint will be scheduled on the node. If a taint with this effect is
added on a node, none of the pods that are already running on
that node are affected.

P. Viossat 19

Listing 10: Example of Node taint

1 apiVersion: v1

2 kind: Node

3 ...

4 spec:

5 taints:

6 - effect: "NoExecute"

7 key: "security-level"

8 value: "3"

9 ...

— PreferNoSchedule: this taint will only be taken into account in
the scoring phase and will lower the score for tainted nodes of pods
that do not tolerate the taint.

— NoExecute: Pods that don’t tolerate the taint won’t be allowed to
run on the node, whether they’re already scheduled on it or not.
Therefore this taint is considered by the scheduler both during the
filtering phase and at runtime. If a taint with NoExecute effect
is added to a node, all pods that do not tolerate the taint will
be evicted by the NodeLifecycleController from the node (we will
discuss this mechanism known as taint-based eviction later in this
paper).

For a toleration to match a taint, it should match both its effect and
key. Moreover, if using the operator Equal, the toleration must have the
same value as the taint to match. The operator Exists allows to match
any value. If the toleration does not specify an effect or a key, it matches
all taint keys or effects.

The listing 11 shows the source code of the helper function that checks
if a toleration tolerates a taint in the Kubernetes source code.9

In listing 12 we give an example of tolerations: only the first toleration
matches the taint given as an example in listing 10. Indeed, in the second
toleration, the value does not match the taint value, while in the second
it is the effect that does not match the one specified in the taint.

The TaintToleration scheduler plugin evaluates the previously de-
scribed conditions to filter 10 out nodes with taints with NoSchedule or
NoExecute effects that the pod to be scheduled does not tolerate.

9 https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.

io/api/core/v1/toleration.go#L29-L57
10 https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/

framework/plugins/tainttoleration/taint_toleration.go#L63-L74

https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/api/core/v1/toleration.go#L29-L57
https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/api/core/v1/toleration.go#L29-L57
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/framework/plugins/tainttoleration/taint_toleration.go#L63-L74
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/framework/plugins/tainttoleration/taint_toleration.go#L63-L74

20 Getting ahead of the schedule: lateral movement in Kubernetes

Listing 11: Source code of toleration check helper function

1 func (t *Toleration) ToleratesTaint(taint *Taint) bool {

2 if len(t.Effect) > 0 && t.Effect != taint.Effect {

3 return false

4 }

5

6 if len(t.Key) > 0 && t.Key != taint.Key {

7 return false

8 }

9

10 // TODO: Use proper defaulting when Toleration becomes a field

of PodSpec→֒

11 switch t.Operator {

12 // empty operator means Equal

13 case "" , TolerationOpEqual:

14 return t.Value == taint.Value

15 case TolerationOpExists:

16 return true

17 default:

18 return false

19 }

20 }

Listing 12: Example of Pod toleration

1 apiVersion: v1

2 kind: Pod

3 ...

4 spec:

5 tolerations:

6 - key: "security-level" # matches the taint key

7 operator: "Equal"

8 value: "3" # matches the taint value

9 effect: "NoExecute" # matches the taint effect

10

11 - key: "security-level"

12 operator: "Equal"

13 value: "2" # does not match the taint value

14 effect: "NoExecute"

15

16 - key: "security-level"

17 operator: "Exists"

18 effect: "NoSchedule" # does not match the taint effect

19 ...

P. Viossat 21

5.2 Node selectors and affinities

Node selectors and node affinities are two mechanisms for telling the
scheduler to which node pods should be assigned. The recommended way
to identify target nodes for a pod is to use the labels that can be configured
in a node’s metadata. The listing 13 shows an example of a node with
a label. In this example, the node has a label security-level with the
value 2.

Listing 13: Example of Node label

1 apiVersion: v1

2 kind: Node

3 metadata:

4 name: node

5 labels:

6 security-level: "2"

7 ...

nodeSelector is an attribute of Pod specification that allows to specify
a set of key-value pairs that must be present in the node’s labels for the
pod to be scheduled on the node.

In the listing 14, we give an example of a pod that will only be
scheduled on nodes with the label security-level set to 2. It would
match the node given as an example in listing 13.

Listing 14: Example of Pod node selector

1 apiVersion: v1

2 kind: Pod

3 ...

4 spec:

5 nodeSelector:

6 security-level: "2"

7 ...

nodeAffinity is another attribute of Pod that allows to spec-
ify more complex rules than nodeSelector. It is composed of
two parts: requiredDuringSchedulingIgnoredDuringExecution and
preferredDuringSchedulingIgnoredDuringExecution. The first part
is a set of rules that must be met for the pod to be scheduled on a node
and evaluated during the filtering phase, while the second part is a set of
rules that are considered during the scoring phase and that will determine
the ranking of the nodes by the scheduler. Both use the same syntax to

22 Getting ahead of the schedule: lateral movement in Kubernetes

specify rules, which can target node labels (using the matchExpressions

rules) or node fields (using the matchFields rules).

As of today, when targeting node fields, only the node name can be
used as a field. It allows DaemonSets to target specific nodes while still
using the rest of the scheduler filtering functions. Indeed, if DaemonSets

were targeting nodes by specifying a nodeName in the pod’s specification,
the scheduler would consider it as scheduled, and other scheduler plugins
would not be called.

In the listing 15, we give an example of a pod with affinity rules. In
this example, a node must have the label security-level set to a value
greater than 0 to be feasible for the pod. The second rule would lead
the NodeAffinity plugin to give a higher score to nodes with the label
security-level set to 2.

Listing 15: Example of Pod node affinity rules

1 apiVersion: v1

2 kind: Pod

3 ...

4 spec:

5 affinity:

6 nodeAffinity:

7 requiredDuringSchedulingIgnoredDuringExecution:

8 nodeSelectorTerms:

9 - matchExpressions:

10 - key: security-level

11 operator: Gt

12 values:

13 - "0"

14 preferredDuringSchedulingIgnoredDuringExecution:

15 - weight: 1

16 preference:

17 matchExpressions:

18 - key:security-level

19 operator: In

20 values:

21 - "2"

22 ...

5.3 Domain of feasibility

To study the isolation of workloads on nodes, we need to determine
which nodes are feasible for a pod if we consider only the two mechanisms
we have just described. Therefore, we will define as the domain of feasibility

P. Viossat 23

of a pod, the set of nodes in the cluster that are feasible for the pod when
applying TaintToleration and NodeAffinity plugins.

For the sake of completeness, we should also point out that some
pods can be statically scheduled if the spec.nodeName attribute is already
defined when the pod is created. We can then add the NodeName plugin
to the list of plugins to consider when evaluating the domain of feasibility
of a pod. Indeed, this plugin will filter out nodes that are not the ones
specified in the spec.nodeName attribute of the pod.11

As the results of filtering plugins are combined with a logical AND,
the domain of feasibility of a pod will contain all feasible nodes for a pod.
The opposite is not always true, as other plugins may restrict the feasible
nodes for a pod to a subset of the domain of feasibility.

Fig. 5. Domain of feasibility

Thanks to the definition of domains of feasibility, we have a simple
way of analyzing the isolation of pods in a cluster. Indeed, having two
pods with distinct domains of feasibility is sufficient to have them isolated
in terms of scheduling.

5.4 Workload isolation anti-patterns

When isolating pods in a Kubernetes cluster, we want two properties:
— pods must be only executed on their dedicated node: pods need to

target their dedicated node with node affinity
— nodes must not run other pods than the pods they are dedicated

to: nodes must repel other pods with taints

11 Careful readers may have noted that the NodeName plugin will almost always have no
effect as the scheduler won’t try to schedule a pod with the attribute spec.nodeName

already set.

24 Getting ahead of the schedule: lateral movement in Kubernetes

Fig. 6. Pod A and B are isolated as their domains of feasibility are distinct

Fig. 7. Pod A and B may not be isolated as their domains of feasibility intersect

P. Viossat 25

If we choose only one mechanism, we will end up having only one of
the two properties and eventually end up in one of the two anti-pattern
scenarios we will describe below.

Anti-pattern 1: using only taints and tolerations The
TaintToleration scheduler plugin is designed to filter out nodes having
taints that are not tolerated by the pod to be scheduled. By using only
the taint and toleration mechanism, there is no guarantee that the pod is
executed only on its dedicated nodes. Indeed, if there is any other node
tolerated by the pod (for instance a node without any taints), it won’t be
filtered out by the scheduler and will be feasible for the pod.

In this case, the pod to be isolated would be allowed to run on the
same node as other pods. In figure 8, we show an example of such a
configuration: the feasibility domains of pods are not distinct, therefore
they are not isolated.

Fig. 8. Anti-pattern 1: using only taints and tolerations

Anti-pattern 2: using only node selectors and affinities The
NodeAffinity scheduler plugin is designed to filter out nodes that
do not have the labels expected by pods in their node selector
or requiredDuringSchedulingIgnoredDuringExecution affinity rules.
Therefore, the scheduling of pods without affinity specification is not
affected by this plugin and these pods can be scheduled on the same nodes
as the pods that we want to be isolated.

26 Getting ahead of the schedule: lateral movement in Kubernetes

In figure 9, we show an example of such a configuration: the feasibility
domains of pods are not distinct, therefore they are not isolated.

Fig. 9. Anti-pattern 2: using only node selectors and affinities

The good pattern: using both The only way to create a workload
isolation system that verifies both properties is to combine both taints
and affinities. In this case, node affinities ensure that pods target their
dedicated nodes and taints guarantee that pods that should run on other
nodes cannot run on the dedicated node. We illustrate this pattern in
figure 10.

Fig. 10. The good pattern: using both

P. Viossat 27

6 Attacking workload isolation: methodology

In the following, we will consider scenarios to attack the isolation of
workloads in a Kubernetes cluster. In all scenarios, we assume that the
attacker has compromised a node in the cluster and has access to the
kubelet account. We also assume that the NodeRestriction admission
controller is enabled in the cluster, as we have seen in section 4.3 that
compromise is trivial without this plugin. We will take advantage of badly
configured isolation and our knowledge of the Kubernetes scheduler to
move workloads from one node to another. We will consider only pods
managed by controllers (such as ReplicaSet or StatefulSet). In this first
subsection, we describe the methodology we will use to attack the isolation
of workloads.

Define the objective When trying to move workloads in a Kubernetes
cluster, we can consider two scenarios:

— Sending pods: the attacker wants to move vulnerable pods from
the compromised node to other nodes in the cluster. We can see
this scenario as moving our entry point to the cluster around the
cluster.

— Attracting pods: the attacker wants to move sensitive pods to
the compromised node.

The sending pods scenario is especially interesting in situations where the
initial access occurs with a vulnerable application or an application that
provides remote execution "by default" (a CI job, data transformation job
with solutions like Airflow or Spark, etc.).

Ensure pod is feasible on the target node To move a pod from
one node to another, we need to ensure that the pod is feasible on the
target node. From a security perspective, we need to ensure that the target
node is in the domain of feasibility of the pod. In practice, we should also
ensure that other scheduling plugins will not filter out the target node.
For instance, if our target node does not have enough resources to run
the pod, the NodeResourcesFit plugin will filter out the node.

Maximize pod probability to be scheduled on the target node

Once we have ensured that the pod is feasible on the target node, we
need to maximize the probability that the pod will be scheduled on the
target node. In case we want to attract pods to the compromised node,
we will want to maximize the probability that the pod will be scheduled

28 Getting ahead of the schedule: lateral movement in Kubernetes

on our node. When sending pods, we will want to ensure that the pod is
not rescheduled to our node.

Trigger pod rescheduling Finally, we need to trigger the rescheduling of
the pod. As we said previously, pods cannot be truly rescheduled. Instead,
we take advantage of the fact that controllers will recreate pods to match
the desired state of pod replicas. To reschedule pods, we will actually need
to trigger pod creation from controllers.

7 Attacking workload isolation: using the kubelet account

7.1 Changing the domain of feasibility of a pod

Adding a compromised node to the domain of feasibility of a

pod By definition, the belonging of a node to the domain of feasibility
of a pod is determined by the node’s labels and taints. If we are able to
modify these two properties, then we are guaranteed to be able to make
the node part of the domain of feasibility of the pod.

As we have seen in the section 4, the kubelet account can modify
its own Node in the Kubernetes API, to the extent permitted by the
NodeRestriction admission plugin. In particular, the kubelet account
can edit the labels of its node, excepted from a blacklist defined by the
NodeRestriction admission plugin.

If the node is untainted and if the labels used by a pod to select its
node do not fall under the NodeRestriction labels blacklist, it is then
trivial to make the compromised node feasible for a pod. All we have to
do is add the missing labels to the node, using the kubelet account as
shown in listing 16.

Listing 16: Adding labels to a node using its kubelet account

1 /# export KUBECONFIG=/etc/kubernetes/kubelet.conf

2 /# kubectl auth whoami

3 ATTRIBUTE VALUE

4 Username system:node:kind-worker

5 Groups [system:nodes system:authenticated]

6 /# kubectl label node kind-worker myLabel=A

7 node/kind-worker labeled

However, the kubelet does not have the right to modify its own taints,
as it is forbidden by the NodeRestriction admission plugin. Therefore,
if the compromised node is tainted and the pod does not tolerate that

P. Viossat 29

Fig. 11. Adding a node to the domain of feasibility of a pod by adding a label

taint, it’s not possible to include the compromised node in the domain of
feasibility of the pod without more privileges.

Fig. 12. Adding a label is not sufficient to add a node to the domain of feasibility
of a pod if the node is tainted with a taint that the pod does not tolerate

This attack shows the importance of the NodeRestriction admission
plugin to isolate workloads in a Kubernetes cluster. In particular, it is
important to use labels protected by NodeRestriction admission plugin
to define node selectors and affinities. As shown in listing 17, labels with
the node-restriction.kubernetes.io/ prefix are reserved for workload
isolation purposes, and kubelets will not be able to modify labels with
that prefix.

30 Getting ahead of the schedule: lateral movement in Kubernetes

Listing 17: Node modifications forbidden by the NodeRestriction
admission plugin

1 /# kubectl taint nodes kind-worker key1=value1:NoSchedule

2 Error from server (Forbidden): nodes "kind-worker" is forbidden:

node "kind-worker" is not allowed to modify taints→֒

3

4 /# kubectl label node kind-worker

node-restriction.kubernetes.io/myLabel=A→֒

5 Error from server (Forbidden): nodes "kind-worker" is forbidden:

is not allowed to modify labels:

node-restriction.kubernetes.io/myLabel

→֒

→֒

Removing a compromised node from the domain of feasibility

of a pod In cases we want to send a vulnerable pod to another node
in the cluster, we will not be able to make new nodes feasible as the
kubelet account cannot edit other nodes thanks to the NodeRestriction

admission plugin. However, we can still make the compromised node
infeasible for the pod to be moved. It will guarantee That the pod will
not be rescheduled on the compromised node.

To do so, we can use the kubelet account to set the
spec.unschedulable attribute of the node. This attribute is not pro-
tected by the NodeRestriction admission plugin and can be modified
by the kubelet account. The scheuler plugin NodeUnschedulable will fil-
ter out nodes with spec.unschedulable attribute set to true. Pod that
tolerates the taint node.kubernetes.io/unschedulable will still not be
filtered out.

Listing 18: Setting the unschedulable attribute of a node

1 /# kubectl auth whoami

2 ATTRIBUTE VALUE

3 Username system:node:kind-worker

4 Groups [system:nodes system:authenticated]

5 /# kubectl cordon kind-worker

6 node/kind-worker cordoned

7 /# kubectl get node kind-worker

8 NAME STATUS

9 kind-worker Ready,SchedulingDisabled

After triggering the rescheduling of the pod, the pod will not be
rescheduled on the compromised node. If the pod is a vulnerable appli-
cation, it may be used to get access to another node that is part of the
domain of feasibility of the pod. There may be more interesting service

P. Viossat 31

accounts bound to pods on this node and gaining access to other nodes
may help to escalate privileges.

In general, when having such a vulnerable pod, we can access all the
nodes in the domain of feasibility of the pod by repeating the operation
as shown in figure 13.

Fig. 13. By moving a vulnerable pod that allows container escape to another node,
we can access all the nodes in the domain of feasibility of the pod

32 Getting ahead of the schedule: lateral movement in Kubernetes

7.2 Maximise probability for a compromised node to be

chosen by the scheduler

After modifying the domain of feasibility of the pod we wish to attract,
we may find ourselves competing with other nodes for the pod’s allocation.
Indeed, in the scoring phase, the scheduler determines the most suitable
node, and we do not have a guarantee that it will be the compromised
node. Therefore, we need to be able to influence the Kubernetes scheduler’s
decision regarding the compromised node.

By analyzing the plugins used during the scoring stage of the Ku-
bernetes scheduler, it is possible to identify plugins where the score is
determined based on information from the node status. With the kubelet
account being able to update the node status, we may have a way to
change the score returned by these plugins.

Three plugins in particular will attract our attention:
— ImageLocality: favors nodes that already have pulled the container

image to be executed
— NodeResourcesFit: with the default LeastAllocated policy, it fa-

vors nodes with the most available resources (CPU and memory)
— NodeResourcesBalancedAllocation: prioritizes nodes so that a

pod avoids consuming all a node’s memory without consuming all
its CPU, and vice versa.

These plugins are particularly interesting because they do not imple-
ment the NormalizeScore plugin phase, meaning that the score returned
is only based on the considered node and not other nodes in the cluster.
It is therefore easier to influence the score of a compromised node. As
a drawback, their weight in the final score is less important than other
plugins such as NodeAffinity but it can still be enough to make the
compromised node have the highest score.

Image locality The NodeStatus subresource contains information about
the images already pulled by a node. It advertises the image names and
sizes of the images.

The ImageLocality plugin computes a score based on the images
already pulled by the node. It favors nodes that already have the images
required by the pod and even more if the images are voluminous. It still
applies a regulation factor that takes into account the number of nodes
that have already pulled the image to avoid that a few nodes attract too
many pods.

If we dig into the source code we can define the score formula as
follows:

P. Viossat 33

— Let Tmin and Tmax be arbitrary image size thresholds (respectively
23MB and 1GB).

— Let N be the number of nodes in the cluster.
— For an image i, we define Ni the number of nodes in the cluster

that have already pulled the image i and Si the size of the image i.
— For a node n, we define I(n) the set of images pulled by the node

n.
— For a pod p, we define Cp the set of containers declared in the pod

specification and ic the image of the container c. ♣Cp♣ is the size of
the set Cp.

The score returned by the ImageLocality plugin sp(n) of the node n

for the pod p is then given by the following formula:

sp(n) = 100 ∗
min

∑

c∈Cp,ic∈I(n)

⌊Ni

N
∗ Si⌋

, ♣Cp♣ ∗ Tmax

− Tmin

♣Cp♣ ∗ Tmax − Tmin

There is a flaw in the score computation: the regulation factor Ni

N

is applied before limiting the image size value by Tmax. In this case, by
increasing the image size in the NodeStatus, we can bypass the regulation
factor and artificially increase the score of the node.

Indeed, the score is maximal when we have the following conditions:

∑

c∈Cp,ic∈In

⌊
Ni

N
∗ Si⌋

≥ ♣Cp♣ ∗ Tmax

For this condition to be true, it’s enough to have an image i, used
by pod specification and already pulled by the node, that verifies the
following condition:

Si ≥ ♣Cp♣ ∗ Tmax ∗ N

Unfortunately, when computing the score, the ImageLocality plugin
uses the same size for all the nodes when considering a given image.
Therefore, if another node has already pulled the image, we cannot use a
fake image size to increase the score of a compromised node only. Indeed,
in the worst case, the size from the NodeStatus of another node will be
used to compute the score of the compromised node or, in the best case,
the plugin will give the max score to all the nodes that have already pulled
the image.

The latter case can still be interesting if other nodes that do not have
already pulled the image are given better scores by other plugins.

34 Getting ahead of the schedule: lateral movement in Kubernetes

However, in cases where the image has not been pulled by any other
node, we are guaranteed to have the maximum score for the compromised
node. This behavior can be exploited in a specific case where the image
defined in the pod specification does not specify the full registry path
before the image name. For example, when setting the image to nginx

instead of docker.io/nginx in the pod specification, the plugin will look
for the image nginx in NodeStatus resource whereas it only contains the
full image name docker.io/nginx. It will then consider that the image
has not been pulled by the node.

It is a known issue and we can find a TODO in the code used to normalize
the image name in the plugin.12

Resources plugins The two plugins NodeResourcesFit and
NodeResourcesBalancedAllocation are used to compute the score of a
node based on the resources available on the node.

By default, the NodeResourcesFit plugin uses the LeastAllocated

policy to compute the score, which gives a higher score to least allocated
nodes.

The score is based on the ratio of requested resources by pods on the
node to the total capacity of the node. It considers different resource types
such as CPU and memory and can use different weights for each resource
type, given in the scheduler configuration.

If we dig into the source code we can define the score formula as
follows:

— Let R be the set of resources to be considered (by default CPU
and memory).

— For a resource i, we define ci(n) the capacity of the resource i on
the node n and rp,i(n) the requested resources of the resource i,
considering already allocated pods and the new pod p to schedule.

— Let wi be the weight of the resource i in the scheduler configuration.
Their sum is equal to 1.

The score returned by the NodeResourcesFit plugin sp(n) of the node
n for the pod p is then given by the following formula:

sp(n) = 100 ∗
∑

i∈R,ci(n) ̸=0,ci(n)≥rp,i(n)

ci(n) − rp,i(n)

ci(n)
∗ wi

12 https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/

framework/plugins/imagelocality/image_locality.go#L123

https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/framework/plugins/imagelocality/image_locality.go#L123
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/framework/plugins/imagelocality/image_locality.go#L123

P. Viossat 35

If rp,i(n) is negligible compared to ci(n), the score is maximal. We can
then increase the score of the node by increasing its capacity so that the
requested resources are always negligible compared to the capacity.

The NodeResourcesBalancedAllocation plugin is used to balance
the allocation of resources on the node. It computes the standard deviation
of the ratio of requested resources to the capacity. The score returned by
the plugin will be proportional to the standard deviation.

If we introduce mp(n) the mean of the ratios
rp,i(n)
ci(n) , the score sp(n) of

the node n for the pod p is then given by the following formula:

sp(n) = 100 ∗
∑

i∈R,ci(n) ̸=0,ci(n)≥rp,i(n)

1 −

rp,i(n)

ci(n)
− mp(n)

2

When we look at the default scheduler configuration,13 we can see that
the plugins consider only CPU and memory resources.

Listing 19: Example of Node capacity

1 - name: NodeResourcesBalancedAllocation

2 args:

3 apiVersion: kubescheduler.config.k8s.io/v1

4 kind: NodeResourcesBalancedAllocationArgs

5 resources:

6 - name: cpu

7 weight: 1

8 - name: memory

9 weight: 1

10 - name: NodeResourcesFit

11 args:

12 apiVersion: kubescheduler.config.k8s.io/v1

13 kind: NodeResourcesFitArgs

14 scoringStrategy:

15 resources:

16 - name: cpu

17 weight: 1

18 - name: memory

19 weight: 1

20 type: LeastAllocated

By following the same strategy as for the NodeResourcesFit plugin,
we can increase the score of the compromised node by increasing its

13 Note that the sum of resources weight is not equal to 1 in the configuration. In
practice, the weights are divided by their sum: the NodeResourcesFit score formula
is correct.

36 Getting ahead of the schedule: lateral movement in Kubernetes

capacity. Indeed, if rp,i(n) is negligible compared to ci(n), then all ratios
rp,i(n)
ci(n) will be negligible compared to 1 (so will be their mean mp(n)) and

the score will be maximal.
To summarize, we just have to update the CPU and memory capacity

of the node to a very high value to get the maximum score for both
plugins.

Updating the node status Now that we have identified interesting
ways of modifying the score of the compromised node, we need to update
the status of the node. As we explained before, the kubelet account has
the required permission to do so but the legitimate kubelet process will
also update the node status periodically as we explained in section 4.4.

As we also explained in the same section, the node lease mechanism
is used to detect the liveness of the kubelet process. The idea is then to
create a node emulator that acts as a kubelet process and updates the
node lease periodically but still allowing us to update the node status.

The implementation of such an emulator is pretty simple as it just
consists in performing API calls. We give an example of implementation
in listing 20.

We can then stop the legitimate kubelet process on the node and run
the emulator using the kubelet account.

When setting the scheduler’s log verbosity to 10, we can see the
scheduler logs that show the score computed for each node. We can
validate that we are able to influence the score of the compromised node
by updating the node status.

In the following, we will consider the scheduling of the pod defined
in listing 21. We consider 2 identical nodes with 16Gi of memory and 20
CPUs. Both nodes have already pulled the image required by the pod. We
deliberately set the resource requests to high values compared to the node
capacities to have more significant score variations in the example, but a
difference a few points can be sufficient in a real scenario.

At the beginning, the score of the two nodes is the same and the pod
is scheduled on the first node to be evaluated. We can see that the score of
the ImageLocality plugin is 0 as we are using the image busybox:latest

that is not specified using a full registry path.

P. Viossat 37

Listing 20: Node emulator

1 from kubernetes import client, config

2 import datetime

3 import time

4

5 node_name = "kind-worker2"

6 target_image = "busybox:latest"

7

8 config.load_kube_config()

9

10 v1 = client.CoreV1Api()

11 coordination_api = client.CoordinationV1Api()

12

13 v1.patch_node_status(node_name, {

14 "status" : {

15 "allocatable" : {

16 "cpu" : "1000000" ,

17 "memory" : "10000000Gi" ,

18 },

19 "capacity" : {

20 "cpu" : "1000000" ,

21 "memory" : "10000000Gi" ,

22 },

23 "images" : [

24 {

25 "names" : [

26 target_image

27],

28 "sizeBytes" : 100000000000

29 }

30]

31 }

32 })

33

34 while True:

35 coordination_api.patch_namespaced_lease(node_name,

"kube-node-lease" , {→֒

36 "spec" : {

37 "renewTime" :

f " {datetime.datetime.now().isoformat()}Z" ,→֒

38 }

39 })

40 time.sleep(10)

38 Getting ahead of the schedule: lateral movement in Kubernetes

Listing 21: Pod specification

1 apiVersion: v1

2 kind: Pod

3 metadata:

4 name: test

5 spec:

6 containers:

7 - name: busybox

8 image: busybox:latest

9 resources:

10 requests:

11 cpu: "1"

12 memory: "12Gi"

13 command:

14 - "sleep"

15 - "infinity"

Listing 22: Scheduler logs

1 // node kind-worker

2 plugin="TaintToleration" node="kind-worker" score=300

3 plugin="NodeAffinity" node="kind-worker" score=0

4 plugin="NodeResourcesFit" node="kind-worker" score=56

5 plugin="VolumeBinding" node="kind-worker" score=0

6 plugin="PodTopologySpread" node="kind-worker" score=200

7 plugin="InterPodAffinity" node="kind-worker" score=0

8 plugin="NodeResourcesBalancedAllocation" node="kind-worker"

score=63→֒

9 plugin="ImageLocality" node="kind-worker" score=0

10

11 // node kind-worker2

12 plugin="TaintToleration" node="kind-worker2" score=300

13 plugin="NodeAffinity" node="kind-worker2" score=0

14 plugin="NodeResourcesFit" node="kind-worker2" score=56

15 plugin="VolumeBinding" node="kind-worker2" score=0

16 plugin="PodTopologySpread" node="kind-worker2" score=200

17 plugin="InterPodAffinity" node="kind-worker2" score=0

18 plugin="NodeResourcesBalancedAllocation" node="kind-worker2"

score=63→֒

19 plugin="ImageLocality" node="kind-worker2" score=0

20

21 "Calculated node's final score for pod" pod="default/test"

node="kind-worker" score=619→֒

22 "Calculated node's final score for pod" pod="default/test"

node="kind-worker2" score=619→֒

23 "Attempting to bind pod to node" pod="default/test"

node="kind-worker"→֒

P. Viossat 39

We now stop the kubelet on node kind-worker2 and run the emulator
script given in listing 20.

Listing 23: Running the emulator

1 /# export KUBECONFIG=/etc/kubernetes/kubelet.conf

2 /# systemctl stop kubelet && python3 kne.py

When deleting and creating the pod again, we can see that the
score of the node kind-worker2 is now higher than the score of
the node kind-worker. In particular, we can see that the score of
the NodeResourcesFit and NodeResourcesBalancedAllocation plug-
ins is almost maximal (the maximum is 100, we got 99) for the node
kind-worker2. The plugin ImageLocality is also maximal as we an-
nounced the same path as the pod specification in the node status.

Listing 24: Scheduler logs after running the emulator

1 plugin="TaintToleration" node="kind-worker2" score=300

2 plugin="NodeAffinity" node="kind-worker2" score=0

3 plugin="NodeResourcesFit" node="kind-worker2" score=99

4 plugin="VolumeBinding" node="kind-worker2" score=0

5 plugin="PodTopologySpread" node="kind-worker2" score=200

6 plugin="InterPodAffinity" node="kind-worker2" score=0

7 plugin="NodeResourcesBalancedAllocation" node="kind-worker2"

score=99→֒

8 plugin="ImageLocality" node="kind-worker2" score=100

9 // we removed the logs for kind-worker as the score is the same

10

11 "Calculated node's final score for pod" pod="default/test"

node="kind-worker2" score=798→֒

12 "Calculated node's final score for pod" pod="default/test"

node="kind-worker" score=619→֒

13 "Attempting to bind pod to node" pod="default/test"

node="kind-worker2"→֒

7.3 Trigger pod rescheduling

Wait for the pod to be recreated It may sound silly, but the easiest
way to reschedule a pod is simply to wait for it to happen "naturally". This
may take more or less time, depending on the frequency of application
and node updates, or the presence of autoscaling in the cluster, but it can
usually happen within a reasonable time.

In the case of a CronJob, the pod will be recreated at the next scheduled
time.

40 Getting ahead of the schedule: lateral movement in Kubernetes

Trigger pod rescheduling with eviction When trying to force pod
rescheduling, the easiest way is to delete the pod so that the ReplicaSet or
StatefulSet controller recreate it. The node authorizer allows the kubelet
to delete pods, however, the NodeRestriction admission plugin prevents
the kubelet from deleting pods that are not bound to its node. We can
still use this to trigger the rescheduling of pods that are bound to the
compromised node and send them to other nodes.

Listing 25: Deleting a pod using the kubelet account

1 /# export KUBECONFIG=/etc/kubernetes/kubelet.conf

2 /# kubectl auth whoami

3 ATTRIBUTE VALUE

4 Username system:node:kind-worker

5 Groups [system:nodes system:authenticated]

6 /# kubectl get pods

7 NAME READY STATUS RESTARTS AGE

8 test 1/1 Running 0 36s

9 /# kubectl delete pod test

10 pod "test" deleted

Trigger pod rescheduling with taint-based eviction In section 5.1
we presented the NoExecute taint effect that allows to evict pods (i.e. stop
a pod already running) from a node. This mechanism can be used to force
the rescheduling of a pod on another node if we are able to add taints on
the node that the pod does not tolerate.

In general, we cannot add taints without more privileges than the
kubelet account. However, we can take advantage of another mechanism
that taints nodes by condition. In particular, we have seen that the Condi-

tionUnknown is applied to a node that fails to update its lease. In this case,
the node controller applies the taint node.kubernetes.io/unreachable

to the node with the NoExecute effect.

This taint is set with a tolerationSeconds attributes of 6000 seconds
which means that after 5 minutes, all pods that are not tolerating the
taint are evicted from the node. If they are managed by a controller such
as a ReplicaSet or a StatefulSet, they will be recreated.

Therefore, if we are able to stop the node lease mechanism, we can
force the rescheduling of pods on other nodes. In the following, we present
a simple way to do so, in case a network is vulnerable to IP spoofing
attacks. Indeed, by performing ARP spoofing attacks, we can prevent the
kubelet from updating its lease against the API server.

P. Viossat 41

Fig. 14. ARP spoofing attack

The ARP spoofing attack runs directly from the node and performs
at network level 2 (Ethernet) so that Network Policies and CNIs are
not involved in the process. However, in a managed environment such
as any well-known cloud provider (AWS, GCP, and Azure), raw level 2
networking is not possible. Indeed, machines in their network don’t have
the true ARP addresses of the destination machine in their ARP tables,
even if in the same virtual network. There is a software component in the
stack that will ensure packets are forwarded to the right machine.

This class of attacks targets mainly on-premise environments. However,
nodes in a cloud environment are more likely to be dynamically spawned
and despawned using cluster autoscalers. Therefore you’ll have greater
chances of "natural" pod rescheduling.

8 Patching pods: one right to move them all

8.1 Adding tolerations to pods

As we have seen, moving pods with the kubelet account has limitations.
In particular, we cannot attract pods that do not tolerate the taints of the
compromised node and we cannot easily force the rescheduling of pods if
the network is not vulnerable to IP spoofing attacks.

42 Getting ahead of the schedule: lateral movement in Kubernetes

The patch permission on Pod objects allows the addition of tolerations
to a pod [9]. The challenge is that it should be done before the pod is
scheduled. We tried to see if it was possible to win a race condition between
the pod creation and the scheduler, but we were not able to do so. In the
end, it appears that there is a more reliable technique that uses the patch

on Pod permission.

Indeed, if we want to add a toleration before the pod is scheduled, all
we have to do is to make it unschedulable i.e. set its domain of feasibility
to an empty set. We can then add the toleration necessary to make the
pod tolerating our compromised node. The pod will then be scheduled on
the compromised node.

To make the pod unschedulable we will take advantage of the
NodeResourcesFit scheduler plugin. This plugin checks if the node has
enough resources to run the pod. One of these resources is the podCapacity

which is the maximum number of pods that can be run on the node. If
the node is already at full capacity, it is filtered out. By default, the
podCapacity is set to 110.

By using the patch pod we can remove the labels used by ReplicaSets

to select the pods they watch. When labels are removed, the ReplicaSet

controller will detect a missing replica and will recreate a pod instance.
However, the old pod we have just patched is not deleted and is still
running on the node. By repeating the operation we can fill the node to
its maximum capacity.

Listing 26: Example of ReplicaSet label selector

1 apiVersion: apps/v1

2 kind: ReplicaSet

3 metadata:

4 name: test-dd6f66d48

5 ...

6 spec:

7 ...

8 replicas: 2

9 selector:

10 matchLabels:

11 app: test

12 pod-template-hash: dd6f66d48

13 ...

P. Viossat 43

Listing 27: Making Pod unschedulable using the patch permission
on Pod

1 # we have two pods running

2 kubectl get pods

3 NAME READY STATUS RESTARTS AGE

4 test-dd6f66d48-nwmwd 1/1 Running 0 7m53s

5 test-dd6f66d48-pfv5l 1/1 Running 0 7m53s

6

7 # overwriting the pod-template-hash label tracked by the

ReplicaSet→֒

8 kubectl label --overwrite pods/test-dd6f66d48-nwmwd

pod-template-hash=hack→֒

9 pod/test-dd6f66d48-nwmwd labeled

10

11 # we now have three pods running

12 kubectl get pods

13 NAME READY STATUS RESTARTS AGE

14 test-dd6f66d48-nwmwd 1/1 Running 0 8m54s

15 test-dd6f66d48-pfv5l 1/1 Running 0 8m54s

16 test-dd6f66d48-xh5n6 1/1 Running 0 25s

17

18 # if we iterate we end up having unscheduled pod (in the example

the kind-worker node has a pod capacity of 4)→֒

19 kubectl get pods -o wide

20 NAME READY STATUS NODE

21 test-dd6f66d48-gpj8w 1/1 Running kind-worker

22 test-dd6f66d48-gxlbk 1/1 Running kind-worker

23 test-dd6f66d48-llnpp 0/1 Pending <none>

24 test-dd6f66d48-mtqq6 1/1 Running kind-worker

25 test-dd6f66d48-wkqxp 1/1 Running kind-worker

We can now patch the pending pod to add tolerations to make it
tolerate the compromised node. If we combine this technique with the
label edition technique, we can make the pod feasible on the compromised
node, whatever the pod’s tolerations and the node’s affinities are.

The only way to prevent this attack is to use labels protected by
the NodeRestriction admission plugin. In particular labels with the
node-restriction.kubernetes.io/ prefix are reserved for workload iso-
lation purposes, and kubelets will not be able to modify labels with that
prefix.

8.2 Terminating pods with activeDeadlineSeconds

The patch permission on pods also allows the modification of the
activeDeadlineSeconds attribute of a pod [9]. This attribute is used to

44 Getting ahead of the schedule: lateral movement in Kubernetes

Fig. 15. Adding tolerations to a pod using the patch permission on pods

set a deadline for the pod to run. If the pod is still running after the
deadline, it is terminated.

By setting the activeDeadlineSeconds to a very low value, we can
force the termination of the pod. If required, the controller will then
recreate the pod. It can also be a good way to stop untracked pods left
when performing the previous attack.

8.3 Real case scenario: the AWS CNI with Calico

One can argue that having patch permission on pods is not a com-
mon situation. However, we have found a real case scenario where this
permission is granted: the AWS VPC CNI with Calico.

Container Network Interface (CNI) is a standard for network plugins
in Kubernetes. The AWS VPC CNI plugin is the AWS implementation
of the CNI standard and is the plugin promoted by AWS for Amazon
EKS clusters. However, it used to not support NetworkPolicies (firewall

P. Viossat 45

rules in Kubernetes) and it is common to use Calico (another CNI plugin)
alongside AWS VPC CNI to enforce network policies in EKS clusters.

Without going into details of the CNI, in this situation, an option has
to be activated on the AWS VPC CNI process called ANNOTATE_POD_IP.
To work, this option requires the patch permission on pods to be granted
to the AWS VPC CNI DaemonSet.

Listing 28: Generation of the cluster role in AWS VPC CNI helm
chart source code

1 {{- if .Values.env.ANNOTATE_POD_IP }}

2 - apiGroups: [""]

3 resources:

4 - pods

5 verbs: ["list" , "watch" , "get" , "patch"]

6 {{- else }}

7 - apiGroups: [""]

8 resources:

9 - pods

10 verbs: ["list" , "watch" , "get"]

11 {{- end }}

This configuration ends up giving the patch permission on every pod
to every node in the cluster (the DaemonSet is running on every node).
Without the use of the adequate node-restriction.kubernetes.io/

labels, it allows an attacker to fully compromise the cluster.

We reported the issue to AWS but as they released recently a new
version of the AWS VPC CNI plugin that supports NetworkPolicies,
they do not plan to find a solution to this issue.

9 Discussion

At this point, it is essential to understand that workload isolation
at node level is not concerning every organizations. Such a mechanism
is sometimes not justified by security requirements or the cluster size.
However, it proves to be a good practice when starting to mutualize a
Kubernetes cluster between different teams and use cases (apps, CI/CD,
etc.) or when the cluster is used to host sensitive workloads.

It is also not a silver bullet and must be combined with good RBAC
configuration to be efficient. Other architectural choices can also be made
such as isolating at cluster level by using multiple clusters. The choice
of a multi-cluster model may be all the more relevant as projects such

46 Getting ahead of the schedule: lateral movement in Kubernetes

as Cluster API ,14 which aim to simplify cluster fleet management, gain
traction.

There are also other isolation mechanisms that can be used in Ku-
bernetes and that should be considered additionally to node isolation.
For example, network policies can be used to restrict the communication
between pods. This can be useful to prevent lateral movement in a cluster.

With policy enforcement tools such as Kyverno or OPA Gatekeeper,15

it is also possible to tighten the authorization rules in a cluster and to
reduce the permissions of kubelet accounts (should my nodes be able to
edit their labels after all ?).

10 Conclusion

In this article, we described the Kubernetes scheduler framework
and the plugins used to implement workload node isolation in a cluster.
We showed that implementing such an isolation requires to activate the
NodeRestriction admission plugin as, otherwise, the isolation can be
compromised by an attacker who would have taken the control of a node.

We also demonstrate that even when using NodeRestriction admis-
sion plugin, there could be flows in the setup of workload isolation in a
cluser. These flaws can come from the use of anti-patterns or by the fact
that isolation is configured without the use of labels that fall under the
NodeRestriction plugin restrictions.

Indeed, we showed that the kubelet account which is used by every
node to communicate with the Kubernetes API server has interesting
permissions that can help an attacker moving pods arround a Kubernetes
cluster.

Finally when having access to interesting permissions with service
account on nodes, such as patching pod objects, we showed that our
analysis of the domain of feasibility of pods is still pertinent and enable
to identify the potential impact of such permissions.

To conclude, we would like to go back on the question that Yuval
Avrahami and Shaul Ben Hai asked in their presentation at Blackhat USA
2022 and that started our work: is container escape equivalent to cluster

compromise ?. Their answer was that it depends on the RBAC permissions
you find on your compromised node. Now we hope that you are convinced
that it also depends on the isolation of your nodes.

14 https://github.com/kubernetes-sigs/cluster-api
15 https://open-policy-agent.github.io/gatekeeper/website/

https://github.com/kubernetes-sigs/cluster-api
https://open-policy-agent.github.io/gatekeeper/website/

P. Viossat 47

References

1. Gke documentation, isolate your workloads in dedicated node pools.
https://cloud.google.com/kubernetes-engine/docs/how-to/isolate-

workloads-dedicated-nodes.

2. Kubehound website. https://kubehound.io/.

3. Kuberneted documentation, scheduler performance tuning. https://kubernetes.

io/docs/concepts/scheduling-eviction/scheduler-perf-tuning.

4. Kubernetes documentation. https://kubernetes.io/docs/home.

5. Kubernetes documentation, authenticating. https://kubernetes.io/docs/

reference/access-authn-authz/authentication.

6. Kubernetes documentation, controllers. https://kubernetes.io/docs/concepts/

architecture/controller.

7. Kubernetes documentation, kube-controller-manager. https://kubernetes.io/

docs/reference/command-line-tools-reference/kube-controller-manager.

8. Kubernetes documentation, "naked" pods versus replicasets, deployments,
and jobs. https://kubernetes.io/docs/concepts/configuration/overview/

#naked-pods-vs-replicasets-deployments-and-jobs.

9. Kubernetes documentation, pod update and replacement. https://kubernetes.

io/docs/concepts/workloads/pods/#pod-update-and-replacement.

10. Kubernetes documentation, scheduling framework. https://kubernetes.io/docs/

concepts/scheduling-eviction/scheduling-framework/.

11. Kubernetes documentation, the kubernetes api. https://kubernetes.io/docs/

concepts/overview/kubernetes-api.

12. Kubernetes source code. https://github.com/kubernetes/kubernetes.

13. HackTricks. Hacktricks docker breakout. https://book.hacktricks.xyz/linux-

hardening/privilege-escalation/docker-security/docker-breakout-

privilege-escalation.

14. Brandon Wagner Jayaprakash Alawala, Re Alvarez-Parmar. Aws blog, customiz-
ing scheduling on amazon eks. https://aws.amazon.com/blogs/containers/

customizing-scheduling-on-amazon-eks, 2022.

15. Microsoft. Threat matrix for kubernetes. https://microsoft.github.io/Threat-

Matrix-for-Kubernetes/.

16. RedHat. State of Kubernetes security report 2023. https://www.redhat.com/en/

resources/state-kubernetes-security-report-2023, 2023.

17. Shaul Ben Hai Yuval Avrahami. Kubernetes privilege escalation: Con-
tainer escape == cluster admin? https://www.blackhat.com/us-

22/briefings/schedule/#kubernetes-privilege-escalation-container-

escape--cluster-admin-26344, 2022.

https://cloud.google.com/kubernetes-engine/docs/how-to/isolate-workloads-dedicated-nodes
https://cloud.google.com/kubernetes-engine/docs/how-to/isolate-workloads-dedicated-nodes
https://kubehound.io/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduler-perf-tuning
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduler-perf-tuning
https://kubernetes.io/docs/home
https://kubernetes.io/docs/reference/access-authn-authz/authentication
https://kubernetes.io/docs/reference/access-authn-authz/authentication
https://kubernetes.io/docs/concepts/architecture/controller
https://kubernetes.io/docs/concepts/architecture/controller
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager
https://kubernetes.io/docs/concepts/configuration/overview/#naked-pods-vs-replicasets-deployments-and-jobs
https://kubernetes.io/docs/concepts/configuration/overview/#naked-pods-vs-replicasets-deployments-and-jobs
https://kubernetes.io/docs/concepts/workloads/pods/#pod-update-and-replacement
https://kubernetes.io/docs/concepts/workloads/pods/#pod-update-and-replacement
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/overview/kubernetes-api
https://kubernetes.io/docs/concepts/overview/kubernetes-api
https://github.com/kubernetes/kubernetes
https://book.hacktricks.xyz/linux-hardening/privilege-escalation/docker-security/docker-breakout-privilege-escalation
https://book.hacktricks.xyz/linux-hardening/privilege-escalation/docker-security/docker-breakout-privilege-escalation
https://book.hacktricks.xyz/linux-hardening/privilege-escalation/docker-security/docker-breakout-privilege-escalation
https://aws.amazon.com/blogs/containers/customizing-scheduling-on-amazon-eks
https://aws.amazon.com/blogs/containers/customizing-scheduling-on-amazon-eks
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/
https://www.redhat.com/en/resources/state-kubernetes-security-report-2023
https://www.redhat.com/en/resources/state-kubernetes-security-report-2023
https://www.blackhat.com/us-22/briefings/schedule/#kubernetes-privilege-escalation-container-escape--cluster-admin-26344
https://www.blackhat.com/us-22/briefings/schedule/#kubernetes-privilege-escalation-container-escape--cluster-admin-26344
https://www.blackhat.com/us-22/briefings/schedule/#kubernetes-privilege-escalation-container-escape--cluster-admin-26344

	Getting ahead of the schedule: lateral movement in Kubernetes

