
1

Frinet
Reverse-engineering using Frida & Tenet

SSTIC 2024

2

2

whoami

 Security researchers @Synacktiv
 Offensive Security
 +170 ninjas
 We are hiring!

 Martin Perrier
 Louis Jacotot

3

3

Context
 Native reverse-engineering approaches

 Static analysis
 Disassembly
 Decompilation
 Understanding of actual

behavior can be complex

 Dynamic analysis
 Debugging
 Instrumentation
 Focuses on details, missing

comprehension of big picture

 Combining both approaches
 Execution trace exploration

 Study of complex programs
 Root-cause analysis
 Attack surface exploration

4

4

Tenet execution trace viewer

 IDA Pro Plugin
 By Markus Gaasedelen
 Won Hex-Rays' 2021 Plug-In Contest
 Graphical interface

 Text-based trace format

rip=0x4000009c, rax=0x7f880100, rsp=0x7f8800ac
rip=0x4000009f, rbx=0x1337
rip=0x400000a2, mw=0x7f880100:1337

5

5

Tenet execution trace viewer

6

6

Tenet trace generation
 Existing tracers

 Intel Pin (x86 only)
 QEMU Plug-In (emulation)

 Limits
 Many platforms are not supported

 Mobile devices, non-x86 architectures
 Tracing a specific portion of code is hard

 Need for a new tracer
 With support for Android, iOS, Linux, Windows… x86/64, arm(64)
 Using already existing tooling

7

7

Frida tracer

 Dynamic instrumentation toolkit
 Frida Stalker

 Basic block recompilation on the fly
 Tracing through callbacks on each instruction
 JavaScript callback (slow!) or native code…

 Stalker with native callback (CModule)
 Records register values, memory accesses
 Support for x86/64, arm(64)
 Outputs Tenet trace file

8

8

Frida tracer
 Command line tool

 Can generate traces for Android/iOS/Linux/Windows!
 Locally or through Frida Server over USB/network
 Spawn/attach process
 Trace provided function address (can be main entry point)
 Works out of the box (no configuration needed in most cases)

 Example

$ python3 tracer.py -U attach update_engine update_engine 0xe2fac

9

9

Tenet – New major features

 Call Tree View
 High-level view of execution flow

 Like a call stack, but for the whole trace

 Memory Search
 Search for a pattern in space and time

10

10

Tenet – Call Tree View

11

11

Tenet – Memory Search
1.

2.

3.

12

12

Demonstration

 Scenario
 Android OTA update service (update_engine)
 Let’s pretend there is no public source code
 Can we downgrade the Android version? (spoiler: no)

 Steps
 1. Get a Pixel 4 and an OTA firmware older than the one installed
 2. Find the handler function address of the service (0xe2fac)
 3. Launch Frinet Tracer on this function
 4. Trigger an update with the old OTA firmware

13

13

Demonstration

 What if we modify the timestamp?
 Problem: we don’t know where it is located in the OTA file!

 Searching for 1598464012 (ascii, hex…) in the OTA file does not work
 We do not have time to reverse-engineer the format

 Solution: Frinet

 Error!

update_engine: [ERROR:delta_performer.cc(1046)] The current OS build timestamp
(1673310313) is newer than the maximum timestamp in the manifest (1598464012)

14

14

Demonstration

15

15

Demonstration

0001c420: 9d17 8210 daef 9a06 d168 708c c09a fa05 hp.....
0001c430: 7a4a 0a46 0a19 676f 6f67 6c65 5f64 796e zJ.F..google_dyn
0001c440: 616d 6963 5f70 6172 7469 7469 6f6e 7310 amic_partitions.

0001c420: 9d17 8210 daef 9a06 d168 70ff ffff ffff hp.....
0001c430: 7a4a 0a46 0a19 676f 6f67 6c65 5f64 796e zJ.F..google_dyn
0001c440: 616d 6963 5f70 6172 7469 7469 6f6e 7310 amic_partitions.

16

16

Demonstration

 Modifying the timestamp did not work
 There is a signature mechanism
 The next step would be to study it

 Error!

update_engine: [ERROR:payload_metadata.cc(214)] Manifest hash verification failed.
update_engine: [ERROR:delta_performer.cc(372)] Mandatory metadata signature validation failed

17

17

Demonstration

18

18

Conclusion
 Available now

 Any feedback is welcome
 👉 https://github.com/synacktiv/frinet

 Frida Tracer
 Modified Tenet Plug-In in subrepository

 Incoming native backend & more
 Python backend is too slow on larger traces
 Rust library, with Python bindings (can be used in Python scripts

without IDA)

 Merci !

https://github.com/synacktiv/frinet

19

https://www.linkedin.com/company/synacktiv

https://twitter.com/synacktiv

https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

